
Department of Applied Radio Electronics

[RE-3] EMBEDDED SYSTEMS: ARM

MICROCONTROLLERS ARCHITECTURE

Curriculum of the academic discipline (Syllabus)

 Course details

Level of higher education First (bachelor's)

Field of knowledge G - Engineering, manufacturing, and construction

Specialization G5 - Electronics, electronic communications, instrument engineering, and radio

engineering Educational program All

Discipline status Elective (F-catalog)

Form of higher education
Full-time

Year of study, semester Available for selection starting from the 2nd year, spring semester

Scope of the discipline 4 credits (Lectures 16 hours, Practical 0 hours, Lab 30 hours,

Independent work 74 hours)

Semester

control/control
measures

Credit

Class schedule https://schedule.kpi.ua

Language of instruction Ukrainian / English

Information about the course
leader / teachers

Lecturer: V. S. Mosiychuk,
Lab: S. O. Sokolsky, Independent work:V. S. Mosiychuk

Course location https://sylabus.online/course/3-vbudovani_systemy_mikrokontrolery_arm_arkhitektury

 Curriculum

1. Description of the course, its purpose, subject matter, and learning outcomes

The training course is based on the ARM Accredited MCU Engineer (AAME) certification program for

embedded systems developers. The training course focuses on understanding processor architecture,

particularly ARM architecture; implementing control and monitoring algorithms in embedded systems

systems; creating software for embedded systems in assembly language and C; and basic skills in creating

software for embedded systems using operating systems.

Separate consideration is given to microcontroller operating modes for reducing power consumption; the

concepts of interrupts and the construction of software for real-time operation.

https://schedule.kpi.ua/
http://rozklad.kpi.ua/Schedules/ViewSchedule.aspx?v=2b9c9880-2193-466e-88d4-f8028d3a2f3b
http://rozklad.kpi.ua/Schedules/ViewSchedule.aspx?v=c910f1dc-aa3e-49de-a522-47f535205178
http://rozklad.kpi.ua/Schedules/ViewSchedule.aspx?v=2b9c9880-2193-466e-88d4-f8028d3a2f3b
https://sylabus.online/course/3-vbudovani_systemy_mikrokontrolery_arm_arkhitektury

Laboratory work covers the specifics of

configuring microcontrollers, creating projects in an automated software development environment for

microcontrollers; implementing control and monitoring algorithms using peripheral devices microcontroller

peripheral devices; performing software optimization according to various criteria.

The aim of the credit module is to develop students' abilities to:

 understand processor architecture;

 design embedded systems based on ARM architecture microcontrollers;

implement control and monitoring algorithms in embedded systems;

 create embedded system software in assembly language;

create software for embedded systems in C;

 create software for embedded systems using operating systems.

Knowledge:

 the generalized structure and architecture of microcontrollers using the ARM Cortex-M0 processor as

an example

 a typical set of assembly language instructions and their use in software development;

microcontroller operating modes for reducing power consumption;

 the concept of interrupts and the construction of software for real-time operation.

Skills:

 configure a microcontroller;

 create projects in an automated software development environment for microcontrollers;

implement control and monitoring algorithms using microcontroller peripheral devices;

 perform software optimization according to various criteria;

 the ability to perform certain actions properly, based on the appropriate use of acquired knowledge.

Experience:

 design and implementation of embedded systems;

creation of software for embedded systems.

2. Prerequisites and post-requisites of the discipline (place in the structural-logical

scheme of training under the relevant educational program)

Before starting the course, it is desirable to complete the discipline "Digital Devices" or "Digital Circuitry."

3. Course content

Section 1. Architecture of 32-bit microcontrollers

Topic 1.1: "Features of 32-bit processor architectures and the advantages of their use as embedded systems"

Definition of embedded systems and systems on a chip; advantages of RISC architecture; features of 32-bit ARM

architecture processors and microcontrollers based on them; ARM architecture processor technologies: JTAG

Debug, Enhanced DSP, Vector Floating Point, EmbeddedICE, Jazelle, Long Multiply, Thrumb.

Topic 1.2: " Architecture of ARM Processors"

Registers, stack, program and data memory; auxiliary processors and interaction with them; arithmetic

logic unit; instruction pipeline; memory organization and management; processor exceptions (interrupts)

and their handling; processor operating modes.

Topic 1.3: "Processor memory organization, exceptions, and interrupts in Cortex-M0"

Memory allocation; Internal Private Peripheral Bus, address ranges; byte sequence formats in memory;

exceptions and interrupts, vector table; determining interrupt priorities.

Topic 1.4: "Features of creating software for embedded systems"

Microcontroller initialization; polling peripheral devices in a loop; interrupt handling; software development

process; comparison of assembly and C programming; data types and access to peripheral devices in C;

CMSIS standard;

Topic 1.5: "ARM and Thumb assembly instruction set"

Data movement commands; memory access commands; stack operation commands; arithmetic operation

commands; logical operation commands; shift and rotation commands;

Topic 1.6: "ARM and Thumb assembly instruction set"

Unconditional and conditional jump commands; comparison commands; group data transfer commands; other

instructions.

Topic 1.7: "Hardware support for operating systems"

Building software that supports the execution of a large number of tasks; SysTick timer, configuration

registers; features of stack usage by the operating system; handling SVC and PendSV exceptions; OC Keil

RTX Kerner.

Topic 1.8: "Power-saving modes of the Cortex-M0 microcontroller"

Power saving modes; WFE and WFI instructions; register configuration; features of developing devices with

low power consumption;

Topic 1.9: "Features of creating optimized software in C"

Rules to follow when writing optimal code; options for using profiling (automatic determination of software

performance and efficiency parameters); frequency of data updates in memory, their location, and access speed;

features of determining the parameters of functions, pointers, counters in cycles, and the resource intensity of

various arithmetic operations.

Chapter 2. Creating embedded system software for 32-bit microcontrollers

Topic 2.1 Creating software in assembly language

Project creation, project structure, startup.s, assembler and linker directives; declaration of constants and variables,

calling subroutines, initializing the clock generator and system timer.

Topic 2.2 Debugging programs and searching for errors

Debugging a program in simulation mode, debugging a program in debug mode, viewing the contents of

processor cache registers, viewing the contents of main memory, step-by-step program execution,

breakpoints, searching for causes of hard_fault_exception, using technical documentation for the

processor.

Topic 2.3 Creating software in C

Creating a project, project structure, startup.s, connecting libraries, CMSIS standard, using ready-made peripheral

device drivers, creating your own driver.

Topic 2.4 Peripheral devices and effective work with them

Creating your own peripheral device initialization program (drivers) and working with them in the main

program, initializing and processing interrupts from peripheral devices.

4. Training materials and resources

Recommended basic literature

1. Yiu J. The Definitive Guide to the ARM Cortex-M0 / J. Yiu . – Newnes, 2011. – 518 p. – ISBN: 978-0-12-

385477-3.

2. Cortex-M0 r0p0 Technical Reference Manual [Electronic document]. – Access mode:
http://www.arm.com/downloads/Technical Reference Manual_cortex_m0_r0p0_trm.pdf – Title from
the screen.

3. Cortex-M0 Devices Generic User Guide [Electronic document]. – Access mode:
http://www.arm.com/downloads/Devices Generic User Guide_cortex_m0_r0p0_generic_ug.pdf – Title
from screen.

4. ARMv6-M Architecture Reference Manual [Electronic document]. – Access mode:
http://www.arm.com/downloads/DDI0419C_arm_architecture_v6m_reference_manual.pdf – Title
from screen.

5. NUC140 Datasheet EN V3.02 [Electronic document]. – Access mode:

http://www.nuvoton.com/resource-files/DA00-NUC140ENF1.pdf– Title from screen.

6. Technical Reference Manual for NUC140 [Electronic document]. – Access mode:
http://www.nuvoton.com/resource-files/TRM_NUC130_NUC140(CN)_Series_EN_Rev2.05.pdf. – Title
from the screen.

Supporting

1. James A. Professional Embedded ARM Development / A. James

2. Wilmershurst T. Development of Embedded Systems Using PIC Microcontrollers / T. Wilmershurst;

translated from English by V.N. Statsenko et al. – Kyiv: MK-Press, 2008. – 544 p.

3. Ball S.R. Analog Interfaces for Microcontrollers / S.R. Ball. – Moscow: Dodeka, 2007. – 362 p.

4. Baker, B. What a Digital Engineer Needs to Know About Analog Electronics / B. Baker; translated from

English by Yu. S. Magda. – Moscow: Dodeka XXI, 2010. – 360 p. – ISBN: 978-5-94120-170-9.

5. Magda, Yu. S. Programming and Debugging C/C++ Applications for ARM Microcontrollers / Yu. S. Magda.

– Moscow: DMK Press, 2012. – 168 p. – ISBN: 978-5-94074-745-1.

Information resources

1. Nuvoton Technology Corporation [Electronic resource]. – Access mode:

http://nuvoton.com. – Title from the screen.

2. ARM Corporation [Electronic resource]. – Access mode: http://www.arm.com. – Title from the

screen.

http://www.arm.com/downloads/Technical
http://www.arm.com/downloads/Devices
http://www.arm.com/downloads/DDI0419C_arm_architecture_v6m_reference_manual.pdf
http://www.nuvoton.com/resource-files/DA00-NUC140ENF1.pdf
http://www.nuvoton.com/resource-files/TRM_NUC130_NUC140(CN)_Series_EN_Rev2.05.pdf
http://nuvoton.com/
http://www.arm.com/

 Educational content

5. Methodology for mastering the academic discipline (educational component)

Lectures

No
Title of the lecture topic and list of main questions (list of teaching aids, references
to literature and assignments for independent study)

1

Topic: "Embedded systems"

• definition of embedded systems and systems on a chip;

• advantages of RISC architecture;

• Features of 32-bit ARM architecture processors and microcontrollers based on them;

• ARM architecture processor technologies: JTAG Debug, Enhanced DSP, Vector Floating Point,
EmbeddedICE, Jazelle, Long Multiply, Thrumb.

Literature:

• Cortex-M0 Technical Reference Manual, Chapter 1
Assignment for independent study:

• Compare ARM7TDMI and Cortex-M0 microcontrollers

• Evaluate the performance and power consumption of the Cortex-M0 microcontroller with 8-bit
microcontrollers

2

Topic: "ARM processor architecture"

• registers, stack, program and data memory;

• auxiliary processors and interaction with them;

• arithmetic logic unit;

• command pipeline;

• memory organization and management;

• processor exceptions (interrupts) and their handling

• processor operating modes.
References:

• James A. Professional Embedded ARM Development, pp. 29–51

• Yiu J. The Definitive Guide to the ARM Cortex-M0, pp. 34 - 51

• Cortex-M0 Technical Reference Manual, Chapters: 2, 3, 4, 5, 6

• Cortex-M0 Devices Generic User Guide, Chapter 2
Assignments for independent study:

• Performing arithmetic and logical operations on 32-bit signed and unsigned numbers,
and determining bit activation

status register N, Z, C, V.

3

Topic: "Processor memory organization, exceptions, and interrupts in Cortex-M0"

• Memory allocation;

• Internal Private Peripheral Bus, address ranges;

• byte sequence formats in memory;

• exceptions and interrupts, vector table;

• Interrupt priority determination.
References:

• Cortex-M0 Technical Reference Manual, Chapter 3

• Cortex-M0 Devices Generic User Guide, pp. 2-12 – 2-18

• Yiu J. The Definitive Guide to the ARM Cortex-M0, pp. 130 – 144, 145 – 182
Assignments for independent study:

• Determination and configuration of the stack address and microcontroller initialization program;

4

Topic: "Features of creating software for embedded systems"

• Microcontroller initialization;

• polling peripheral devices in a cycle;

• Interrupt handling;

• Software development process;

• comparison of programming in assembly language and C;

• data types and access to peripheral devices in C;

• CMSIS standard;
References:

• James A. Professional Embedded ARM Development, pp. 52 -71

• Yiu J. The Definitive Guide to the ARM Cortex-M0, pp. 51–79
Assignments for independent study:

• Summarize the provisions of the CMSIS standard.

5

Topic: "ARM and Thumb assembler instruction set"

• data movement commands;

• memory access commands;

• stack operation commands;

• Arithmetic operation commands;

• logic operation commands;

• shift and rotation commands;
References:

• Cortex-M0 Devices Generic User Guide, Chapter 3

• James A. Professional Embedded ARM Development, pp. 121 - 132

• Yiu J. The Definitive Guide to the ARM Cortex-M0, pp. 80 - 129
Assignment for independent study:

• Provide examples of programs for each instruction.

6

Topic: "ARM and Thumb assembler instruction set"

• unconditional and conditional jump commands;

• comparison commands;

• group data transfer commands;

• other
instructions.
References:

• Cortex-M0 Devices Generic User Guide, Chapter 3

• James A. Professional Embedded ARM Development, pp. 132 - 143

• Yiu J. The Definitive Guide to the ARM Cortex-M0, pp. 80 - 129
Assignment for independent study:
• Provide examples of programs for each instruction.

7

Topic: "Hardware support for operating systems"

• Building software that supports the execution of a large number of tasks

• SysTick timer, configuration registers;

• features of stack usage by the operating system;

• processing of SVC and PendSV exceptions;

• OC Keil RTX Kerner.
References:

• Yiu J. The Definitive Guide to the ARM Cortex-M0, pp. 183–197, 331–357
Assignment for independent study:

• Provide examples of SVC and PendSV exception handling programs.

8

Topic: "Energy-saving modes of the Cortex-M0 microcontroller"

• power-saving modes;

• WFE and WFI instructions;

• register configuration;

• Features of developing devices with low power consumption; References:

• Yiu J. The Definitive Guide to the ARM Cortex-M0, pp. 198–211, 310–329
Assignment for independent study:

• Provide examples of programs for setting energy-saving modes.

9

Topic: "Features of creating optimized software in C"

• Rules to follow when writing optimal code;

• options for using profiling (automatic determination of software performance and efficiency
parameters);

• frequency of data updates in memory, their location, and access speed;

• Features of determining the parameters of functions, pointers, counters in cycles, and the
resource intensity of various arithmetic operations

References:

• James A. Professional Embedded ARM Development, pp. 175 -190.

Laboratory work

The discipline "Embedded Systems" belongs to disciplines in which considerable attention is paid to the

practical component of training. Therefore, a larger number of classroom hours are allocated to computer

workshops. The main purpose of laboratory classes is to experimentally verify theoretical knowledge,

acquire skills in designing, implementing algorithms using

using assembly language and C programming, debugging and verification of radio engineering device designs

by simulating them on mock-ups.

No.

Name of laboratory work

Number
of aud.
hours

1

Creating the first project in the KEIL MDK system. Generating signals of a specified
duration and period at the microcontroller outputs. Connecting to the LED display.
Indicating the status of the LED display.
LEDs. Indication of the status of the PVV.

4

2

Entering information from the keyboard. Polling the status of buttons. Software
implementation of "anti-jitter". Processing events for short and long
button presses.

4

3

Dynamic indication. Methods of multifunctional use of PVV. Time separation of their use.
Recoding of data from binary code to
binary-decimal.

4

4
Initiation of events with a specified periodicity using interrupts due to
timer overflow. Interrupt processing.

4

5

Using the UART asynchronous data transfer module. Data transfer to a PC. Displaying
data in a PC terminal. Recoding data from binary code to ASCII table codes. Streaming
data output to a terminal. The printf function. Implementing a dialog menu with the
user in a PC terminal and on a graphic
indicator.

4

6

Using the ADC module. Processing interrupts upon completion of the ADC. Forming the
sampling frequency. Analog-to-digital conversion
using low power modes.

4

7
PWM generation and decoding. Controlling the speed of DC motors
. Controlling stepper motors.

4

8
Serial synchronous data interfaces: SPI, I2C, CAN. Recording and
reading data to an SD memory card.

4

9 Installation of real-time operating system (RTOS). Implementation of software in the
operating system.

4

All laboratory work is performed in the KEIL automated design environment on Nu-LB-NUC140 training

models from NUVOTON. Each student receives an individual assignment, which they complete

independently at their workstation, equipped with a personal computer and a model of an embedded

system based on a microcontroller. Students receive their lab assignments in advance. Before the start of

the class, a survey is conducted to assess the student's readiness to perform the work. After the work is

completed, the results are defended and discussed.

Laboratory work is planned after studying the main material, as laboratory work is complex.

6. Independent work of the student

No.
No

Title of the topic for independent study
Number
hours SRC

1

Topic 5. Set of ARM and Thumb assembler instructions
ARM assembly language instructions and examples of their use References:
• James A. Professional Embedded ARM Development

6

2

Topic 9. Circuitry of embedded systems
MCU clocking. Power supply and grounding for MCU microcircuits. Signal levels.
Formation of control signals for various purposes, including for powerful drives.
Coupling and interaction of embedded systems with analog blocks. Protection of
radio-technical devices from impulse interference from the MCU core.

References:

• Baker B. What a digital engineer needs to know about analog
electronics

6

Individual assignments

The curriculum for the discipline "Embedded Systems" provides for the completion of a calculation

assignment.

The main objectives of the project are to develop skills in independently managing one's own project, in

particular, developing an embedded system for a specific radio engineering device according to an individual

task, which determines the functionality to be implemented by the microcontroller.

Organize the interaction and operation of one of the external peripheral devices specified in the individual

assignment with a computer using a microcontroller (MC): ADC; DAC; RAM memory; flash memory; LCD

display – character and graphic; LCD display – graphic; temperature sensor; acceleration sensor

(accelerometer); frequency synthesizer (DDS); real-time device (RTC).

The connection to the computer is configured identically for all options via the MC's serial port using the UART

module. The purpose of data exchange with the computer is to control the correct operation of the

microcontroller system, or to store or display the received data, such as from sensors or ADCs.

All the information necessary for the work regarding the organization of the interface is available in the

documentation for the devices used as peripherals for the MC. The documentation (datasheet) is

available for download from the manufacturers' websites on the Internet.

The following sections must be included in the calculation work:

1. Program algorithm according to the task.

 Initialization of the necessary MC modules;

 Initialization of the necessary MC interrupts according to the algorithm;

 Initialization of the external peripheral device according to the task option;

Interrupt processing;

2. Calculation of the necessary delay time and transmission speed for the specified MC frequency.

3. Program listings with mandatory comments on commands.

4. Schematic diagram of the MC power-up with clock generator elements and auxiliary external

peripheral devices.

 Policy and control

7. Academic discipline policy (educational component)

Rules for attending classes (both lectures and practical/laboratory classes)

Laboratory work is mandatory. If these classes are missed, they should be made up during consultations or

with other groups. If lectures are missed, tests on the material covered in the missed class should be taken

and passed. Lecture materials and videos are posted on the LMS.

Defense of laboratory work

Laboratory work is defended on the day the laboratory work is completed. The student receives two grades.

The first is for activity and initiative during the laboratory work and individual classes. The second is for the

defense and answers to control questions.

Defense of individual assignments

As part of their independent work, students complete assignments based on lecture materials.

Based on the results of the review, course participants receive comments from the instructor and a

grade. Individual assignments cannot be retaken.

Incentive and penalty points and academic integrity policy

The most active students and students who perform individual tasks in an exemplary manner can

receive up to 10 points towards their semester rating.

Penalty points are applied in cases of passing off someone else's work as one's own, with

mandatory subsequent reworking.

Deadline and resit policy

If the deadlines for submitting assignments are missed, the maximum score for the assignments

is reduced by 10%.

8. Types of control and rating system for assessing learning outcomes (RSO) Control

works

The purpose of the test is to check the quality of knowledge acquired in lectures and to monitor

students' independent work, which is mainly of a reference nature, but knowledge of which is

extremely important for achieving the objectives of the discipline. The test is divided into separate

parts and is conducted in the form of independent work.

The main tasks included in the tests are:

1. Initialization of input/output ports (I/O) of the MC. Algorithms and programs for working with them.

2. Initialization and processing of interrupts from the main MC modules: timers, I/O, etc. Interrupt

processing subroutines.

3. Methods and algorithms for forming precise specified time intervals, their software
implementation.

4. Initialization of PWM sequence formation. Algorithms and programs for forming and decoding

PWM sequences.

5. Initialization of the analog-to-digital conversion (ADC) module. Algorithms and programs for signal
discretization. Interrupt processing. Analog-to-digital conversion in energy-saving mode. Multi-
channel ADC.

6. Initialization of the synchronous serial port (SPI, I2C) module. Reception and transmission of data

by interrupts.

7. Initialization of the universal synchronous/asynchronous receiver/transmitter (USART) module.

Receiving and transmitting data by interrupts.

Grading system for assessing learning outcomes

 Lectures/webinars - 18 hours; (2 MCW x 15 points)

 Homework (6 assignments x 5 points)

 Laboratory work - 36 hours; (8 labs x 5 points)

 Calculation and design work (2 stages x 15 points)

Table of correspondence between rating points and university scale grades

Number of points Grade

100-95 Excellent

94 Very good

84 Good

74-65 Satisfactory

64-60 Sufficient

Less than 60 Unsatisfactory

Admission requirements not met Not admitted

9. Additional information on the discipline (educational component)

List of questions for the test

1. ARM-v6M processor memory organization

2. Purpose of registers LR, SP, PC.

3. Explain the purpose of the SPSR register.

4. Logic operation commands.

5. Arithmetic and logical operation commands.

6. BX, BLX commands. Their purpose.

7. LSLS, LSRS, and RORS commands. Examples of use.

8. Commands for calling and returning from subroutines.

9. Commands for working with the processor cache memory.

10. Conditional jump commands. Types of command suffixes.

11. Shift commands.

12. Examples of using direct memory access commands LDR, STR

13. Working with bits in assembly language

14. Features of working with constants.

15. Explain how the CMP command is executed. What commands are similar to the one given?

16. What is the difference between the data transfer commands ADDS R0, R1, #1 and ADDS R0,
#7?

17. What do the directives #include, EQU, IMPORT, and EXPORT mean?

18. Methods of forming time delays. Examples with calculations.

19. Purpose of the stack.

20. PUSH and POP commands, examples of their use.

21. Examples of using the DTD command. Lookup tables.

22. The procedure for unlocking and locking writes to system control registers.

23. Provide analogues of while and for loops in assembly language.

24. The structure of input/output ports. Operating modes.

25. Initialization of input/output ports.

26. Clock generator settings.

27. Initialize the clock generator using the PLL frequency multiplier.

28. USART module structure.

29. Initialize the UART module.

30. Initialize the interrupt in case of TMR0 timer overflow.

31. Initialize the system timer to obtain an interrupt frequency of 1 kHz.

32. Assign a watchdog timer (WDT) and work with it.

33. Initialization of power-saving modes.

34. ARM-v6M exception and interrupt system.

35. Context saving of working registers in case of interrupt handling.

36. Provide an example of interrupt initialization and handling.

37. Interrupts from the system timer.

38. Perform interrupt initialization on input/output ports.

Description of material, technical, and information support for the discipline

A specialized microcontroller laboratory has been created for this course at the Department of

Applied Radio Electronics. According to the NUVOTON academic program, the laboratory is

equipped with

20 workstations with NUC140 Learning Board models with advanced peripherals and an ARM

Cortex-M0 NUC140VE3CN microcontroller. The IDE KEIL uVision 5 software is used for laboratory

work. Additional equipment, such as digital oscilloscopes and generators, is used for certain

laboratory work.

The working program of the academic discipline (syllabus):

Compiled by V. S. Mosiychuk and S. O. Sokolsky.

Approved by the PRE Department (Minutes No. 06/2025 dated 24.06.2025)

Approved by the methodological commission of the faculty/research institute (protocol No. 06/2025
dated 25.06.2025)

http://rozklad.kpi.ua/Schedules/ViewSchedule.aspx?v=2b9c9880-2193-466e-88d4-f8028d3a2f3b
http://rozklad.kpi.ua/Schedules/ViewSchedule.aspx?v=c910f1dc-aa3e-49de-a522-47f535205178

