
Department of Radio Engineering Systems

[RE-61] OBJECT-ORIENTED PROGRAMMING

TECHNOLOGIES FOR RADIO ENGINEERS

Curriculum of the academic discipline (Syllabus)

 Course details

Level of higher education First (bachelor's)

Field of knowledge 17 - Electronics, automation, and electronic communications

Specialization 172 - Electronic communications and radio engineering

Educational program All educational programs

Discipline status Elective (F-catalog)

Form of higher education

Year of training, semester
Full-time

Available for selection starting from the 2nd year, spring semester

Scope of the discipline 4 credits (Lectures 18 hours, Practical classes 36 hours, Laboratory

work 36 hours, Independent work 66 hours)

Semester

Control/control

measures
Credit

Class schedule https://schedule.kpi.ua

Language of instruction Ukrainian / English

Information about the

course leader /

lecturers

Lecturer: Neuymin O. S.,

Lab: Neuymin O. S.,

Independent work:

Neuymin O. S.

Course location https://do.ipo.kpi.ua/course/view.php?id=2521

 Curriculum

1. Description of the course, its purpose, subject matter, and learning outcomes Object-

oriented programming in C++

C++ is based on the C language and currently supports various programming styles, including object-

oriented style, which makes it easy to maintain large projects. This language remains one of the fastest

and is used in a variety of fields

https://schedule.kpi.ua/
http://rozklad.kpi.ua/Schedules/ViewSchedule.aspx?v=0f384b37-26cc-40df-9ab5-c3eeb071b024
http://rozklad.kpi.ua/Schedules/ViewSchedule.aspx?v=0f384b37-26cc-40df-9ab5-c3eeb071b024
http://rozklad.kpi.ua/Schedules/ViewSchedule.aspx?v=0f384b37-26cc-40df-9ab5-c3eeb071b024
http://rozklad.kpi.ua/Schedules/ViewSchedule.aspx?v=0f384b37-26cc-40df-9ab5-c3eeb071b024
https://do.ipo.kpi.ua/course/view.php?id=2521

— from graphical user interfaces and 3D graphics in games to robotics. C++ is used by all major

companies, such as Amazon, Google, and Microsoft, and in Ukraine by GlobalLogic, Samsung,

Luxoft, and Infopulse. The language is also actively developing, as every three years a new standard

is adopted by a special C++ standardization committee, which adds new features to the language.

C++ programmers are in demand all over the world, as evidenced by the number of open vacancies

and salary levels.

The aim of the course is to develop the following skills in students:

 apply the fundamentals of object-oriented programming technology and basic design

patterns when creating software for radio-technical information systems;

 create software with appropriate functionality for radio-electronic

equipment; debug and implement programs in various programming

environments;

 find, evaluate, and use information from various sources necessary for solving professional

tasks;

 work in a team.

Students will gain knowledge of:

 the basics of object-oriented programming technology;

 basic design patterns;

 relationships between classes and the basics of UML (class and sequence diagrams);

 basic tools of the C++ language and the standard STL library;

 the Git version control system.

Students will be able to:

 apply an object-oriented approach when designing complex software systems with appropriate

functionality;

 implement software taking into account requirements for its quality, reliability, and performance

characteristics;

 master the tools of the C++ language;

 implement and debug programs in various programming environments.

2. Prerequisites and post-requisites of the discipline (place in the

structural-logical scheme of training under the relevant educational

program)

The disciplines that provide "Object-Oriented Programming for Radio Engineers" are:

"Higher Mathematics," "General Physics," and "Computer Science." To successfully master

the discipline, students must have a basic level of proficiency in the C programming language.

This discipline is the basis for studying all subsequent disciplines in which the principles of

object- oriented programming must be used to write software, for example, a thesis project.

3. Contents of the discipline

Main topics of the discipline

1. Working with memory. Memory interpretation.
2. Static local variables in functions. Pointers to functions.
3. Basic concepts of object-oriented programming: encapsulation, polymorphism,

inheritance.
4. Classes. Constructors. Destructors. Initialization rules. Overloaded constructors.
5. Copy constructor and assignment operator overloading. The this pointer. Pointers

to class members and their use.

6. Overloading operators. Rules. Understanding situations when overloading is necessary overloading

is necessary. Diagnosis of operators that are executed during overloading. Overloading operators

+, =, [], ++, (), type conversion, ->, new. delete. placement new.
7. Friend functions, friend classes, class forward declaration. Overloading

of "friend" operators.
8. Static class members (static member variables, member methods), Singleton pattern.
9. Use of const and mutable modifiers. Removal of constancy

(mutable modifier, const_cast).
10. Dynamic data structures. Singly linked list. Doubly linked list. Queue. Circular queue.

Priority queue. Binary tree.
11. Working with the C++ Standard Library (STL). Containers. Iterators.
12. Algorithms (rules of use; pros and cons) big O notation.
13. Inheritance. Initialization rules for inheritance. Single

inheritance, multiple inheritance, virtual inheritance.
14. Virtual functions. Early and late binding. The need for a virtual destructor.
15. Abstract classes and interfaces.
16. Design patterns. Aggregation and awareness. UML class diagrams, object interactions object

interactions. Creational patterns. Structural patterns. Behavioral patterns.
17. Exception handling. try; catch; throw. Using throw to simplify logic and speed.

Writing wrapper classes (smart pointers).
18. Git version control system.

Additional topics

1. Working with files and directories in C++.

2. N amespace.

3. Templates. Function templates. Class templates (template
specialization, template parameters, non-standard template parameters).

4. Boost library classes.

5. Dynamic DLL libraries.

6. Network applications. Blocking and non-blocking modes, protocols.

7. Working with databases, creating databases and tables.

8. Working with the Qt framework.

9. Functions with an indefinite number of parameters. File format.

4. Teaching materials and

resources Basic

literature:

1. Vasilyev, O. Programming in C++ in examples and tasks: textbook / O. Vasilyev.
— Kyiv: Lira-K, 2017. — 382 p.

2. Programming in C and C++: textbook / D.D. Tatarchuk, Yu.V. Didenko. — Kyiv, 2012.

— 112 p. [Electronic resource]. Access mode:

https://ela.kpi.ua/bitstream/123456789/25787/1/NP_PM_C_ta_C%2B%2B.pdf

3. Eric Freeman. Head First. Design Patterns. Kharkiv: Fabula, 2020.
4. Neuymin, O. S. Object-Oriented Programming Technologies for Radio Engineers.

Homework Assignment [Electronic resource]: a textbook for bachelor's degree students
in the educational programs "Radio Engineering Computerized Systems,"Information
and Communication Radio Engineering," "Intelligent Technologies of Radio Electronics"
specialty 172 "Telecommunications and Radio Engineering" 172 "Electronic
Communications and Radio Engineering" / O. S. Neumin, O. Yu. Myronchuk; Igor
Sikorsky Kyiv Polytechnic Institute. – Electronic text data (1 file: 1 MB). – Kyiv: Igor
Sikorsky Kyiv Polytechnic Institute Sikorsky, 2023. – 17 p. – Title from screen.
https://ela.kpi.ua/handle/123456789/55285

Additional literature:

1. Stephen Prata. C++ Primer Plus. Addison-Wesley Professional; 6th edition. – 1440 P.
2. Scott Chacon, Ben Straub. Pro Git book. Link: https://git-scm.com/book/uk/v2
3. Nicolai M. Josuttis. The C++ Standard Library - A Tutorial and Reference, 2nd

Edition. Addison Wesley Longman, 2012.

4. Anthony Williams. C++ Concurrency in Action: Practical Multithreading.

Manning; 1st edition, 2012 – 528 P.

https://ela.kpi.ua/bitstream/123456789/25787/1/NP_PM_C_ta_C%2B%2B.pdf
https://ela.kpi.ua/handle/123456789/55285
https://git-scm.com/book/uk/v2

Some books can be found at the link - https://ua.booksee.org/ Telegram

community on C++ at Igor Sikorsky Kyiv Polytechnic Institute -

https://t.me/itkpi_cpp

Educational content

5. Methodology for mastering the academic discipline (educational component)

 Lectures are conducted in accordance with the topics listed in Section 3, "Course

Content."

 Practical classes are not included in the curriculum of the discipline.

 The curriculum does not provide for seminars.

 Laboratory work is carried out in the GitHub Classroom or Moodle system.

Topics of laboratory work:

1. "Basics of using OOP in C++." The purpose of the work is to familiarize

yourself with the basic principles of object-oriented programming.
2. "Overloading operations."
3. "Application of inheritance and polymorphism."
4. "Dynamic data structures."
5. "Working with the standard C++ library (STL)"
6. "Handling Exceptions"

LR No. 1. Implementation

of Array LR No. 2. Stack

implementation

LR No. 3. Uploading the project to GitHub

LP No. 4. Overloading operators for the Array class LP No.

1. Independent work by students

Title of the topic for independent study

1. Working with files and directories in C++.

2. N amespace.

3. Templates. Function templates. Class templates (template
specialization, template parameters, non-standard template parameters).

4. Boost library classes.

5. Dynamic DLL libraries.

6. Network applications. Blocking and non-blocking modes, protocols.

7. Working with databases, creating databases and tables.

8. Working with the Qt framework.

9. Functions with an indefinite number of parameters. File format.

Homework assignment

The purpose of the homework assignment is to deepen understanding of the theoretical course

material and reinforce the skills of independently applying the acquired knowledge. The assignment

covers all topics.

The assignment must be completed according to one of the options. The option for each

assignment is selected according to the student's number in the group journal.

When completing each task, you must first develop a class diagram using UML, and then write the

program code in the C++ programming language using a development environment, such as

Visual Studio.

Requirements for the final project

https://ua.booksee.org/
https://t.me/itkpi_cpp

 The project must use at least one third-party

library. The program consists of at least two

classes.

 The project must have a UML diagram.

 The final result of the project should be posted on GitHub.

Example task

Create classes with the specifications below. Define constructors and methods set.. (), get.. (),

toString (). Set the data selection criteria and output this data to the console or GUI window. Each

class that contains information must have several constructors declared.

You must overload the ''' operator to output data to the console or GUI window. It must be

possible to write the data of all objects to an encrypted file (the student chooses the

encryption method) or database (DB).

1. Student: id, Last name, First name, Date of birth, Phone number, Faculty, Course,

Group. Create an array of objects. Output: a) a list of students from a given faculty; b)

lists of students for each faculty and course; c) a list of students born after a given

year; d) a list of students in a study group.

The time allocated for the completion of the DCR is at least two weeks.

Policy and control

2. Academic discipline policy (educational component)

 Students are required to attend all lectures and laboratory

classes

. students are awarded incentive points for their activity in class.

 Students must complete their homework assignments by the date set by the

instructor.

 Penalty points will be applied to students found guilty of plagiarism.

 In case of failure to complete the curriculum and the presence of valid reasons for this, the

student may be given an individual assignment.

Types of control and rating system for assessing learning outcomes

Ongoing assessment: quizzes on the topic of the lesson, Module test, test.

Calendar assessment: conducted twice per semester to monitor the current status of syllabus

requirements. Semester assessment: credit/defense of the final course project

Conditions for admission to semester assessment:

 minimum passing grade for individual assignments – 5 points;

 completion of all laboratory work;

 semester rating of more than 40 points.

Table of correspondence between rating points and grades on the
university scale

Number of points Grade

100-95 Excellent

94 Very good

84 Good

74-65 Satisfactory

64-60 Sufficient

Less than 60 Unsatisfactory

Admission requirements not met Not admitted

3. Additional information on the discipline (educational component)

Examples of questions that are included in the semester exam:

1. Basic concepts of object-oriented programming: encapsulation.

2. Basic concepts of object-oriented programming inheritance.

3. Basic concepts of object-oriented programming: polymorphism.

4. Rule for initializing class members.

5. Why are methods and constructors needed?

6. Why Destructors are needed.

7. Access specifiers.

8. What is operator overloading (examples: +, =, [], ++, (), type casting, ->).

9. What rules of operator overloading do you know?

10. Can a constructor be overloaded?

11. Why do we need a copy constructor?

12. Why do we need assignment operator overloading?

13. What are shallow and deep copying? The this pointer.

14. Features of static class members (static member variables, member methods).

15. How does the initialization of a descendant object occur?

16. What is the relationship between derived and base classes.

17. What is the protected specifier for?

18. Virtual functions, destruction.

19. What is an abstract base class?

20. What is an interface?

21. What are the differences between a linked list and an array?

22. What STL containers are you familiar with?

23. What is an iterator?

24. When is the Singleton design pattern needed?

25. Why do you need a virtual destructor?

26. For what purposes is the const keyword used?

27. How can you protect an object from being copied?

28. What is the difference between struct and class?

29. What is the difference between malloc and new?

30. What are the differences between delete and delete []?

Possibility of crediting certificates of completion of distance or online courses on relevant topics;

A student may be credited with a certificate of completion of online courses on the relevant

subject only with the prior agreement of the instructor and approval of the online course on the

subject of the C++ curriculum.

The grade is given based on the results of an interview with the student after completing the

online course.

Description of material, technical, and informational support for the discipline

Classes are held on computers located in the RTS department classroom. Students may use

their own laptops.

The following software is used: Microsoft Visual Studio, Qt Creator, Git, Conan.

Link to the Moodle distance learning platform –

https://do.ipo.kpi.ua/course/view.php?id=2521

Work program for the academic discipline (syllabus):

Compiled by Neuymin O. S.;

Approved by the RTS Department (Minutes No. 06/2024 dated 06/27/2024)

Approved by the methodological commission of the faculty/research institute (protocol No. 06/2024

dated 28.06.2024)

https://do.ipo.kpi.ua/course/view.php?id=2521
http://rozklad.kpi.ua/Schedules/ViewSchedule.aspx?v=0f384b37-26cc-40df-9ab5-c3eeb071b024

