

[RE-5] RADIO AUTOMATION

Work program of the academic discipline (Syllabus)

Course details

Level of higher education	First (bachelor's)
Field of knowledge	G - Engineering, manufacturing, and construction
Specialty	G5 - Electronics, electronic communications, instrument engineering, and radio engineering
Educational program	All
Discipline status	Elective (F-catalog)
Form of higher education	Full-time
Year of training, semester	Available for selection starting from the 3rd year, fall semester
Scope of the discipline work 74 hours)	4 credits (Lectures 16 hours, Practical classes 30 hours, Laboratory
Semester	
Control/control measures	Credit
Class schedule	https://schedule.kpi.ua
Language of instruction	Ukrainian
Information about the course coordinator/teacher	Lecturer: N. O. Laschevska , Lab: S. O. Sokolsky ,
s	

Curriculum

1. Description of the course, its purpose, subject matter, and learning outcomes

Modern radio engineering devices for various purposes and radio control systems use automatic systems called radio automation systems (**RA systems**). Such systems include frequency and phase auto-tuning systems, automatic gain control, distance measurement, various tracking filters, systems for measuring the coordinates of moving objects, etc.

The theory of automatic regulation and automatic control is an integral part of the design of complex dynamic systems. The purpose of automation is to free people and directly involve them in the process of controlling and regulating automation tasks: 1. building the best systems in terms of control quality is a synthesis task; 2. theoretical research is an analysis task;

Radio automation is the science of general principles and methods of constructing automatic control systems in radio engineering and radio electronics, i.e., systems that perform their tasks without direct human (operator) involvement.

Nowadays, RA systems based on the latest achievements in microelectronics and microprocessor technology are very common in radio control systems.

The knowledge gained by students in the course of studying the discipline "Radio Automation" will be useful in studying the following disciplines of the curriculum for training specialists in the field of radio engineering and radio communications.

As a result of studying the discipline, the student should **KNOW:**

- the basic principles of automatic control theory and its application in the construction of radio automatic control systems;
- typical radio automatic systems and the principles of their operation;
- basic mathematical methods of analysis and synthesis of linear automatic control systems, methods of testing systems for stability, basics of radio automation system optimization;
- typical transfer functions and typical dynamic links of radio automation systems, basics of building and transforming structural diagrams;
- basic elements of radio automation systems and their characteristics;

BE ABLE TO:

- calculate the transfer functions of radio automation system elements and the system as a whole;
- evaluate the stability of the system in operation;
- design automatic control systems for radio devices.

SKILLS:

- construct structural, functional, and schematic electrical diagrams of radio automation systems and their circuit implementation;
- perform mathematical modeling using modern computer software for automatic control systems and determine their characteristics and parameters.

2. Prerequisites and post-requisites of the discipline (place in the structural-logical scheme of training under the relevant educational program)

The discipline "Radio Automation" is based on the courses "Fundamentals of Circuit Theory," "Processes in Linear Electronic Circuits," "Fundamentals of Telecommunications Theory," and "Advanced Mathematics." To study "Radio Automation," it is desirable for students to have taken and mastered these basic disciplines. Also, to perform laboratory work in "Radio Automation," students must be familiar with the methods of modeling in the MatLab environment, which are taught in the course "Computer Science."

3. Contents of the course

Topic 1. General characteristics of automatic systems Topic

2. Transfer function of radio automation systems Topic 3.

Typical links of radio automation systems

Topic 4. Stability of automatic systems

Topic 5. Evaluation of the quality of automatic systems in transient mode

Topic 6. Accuracy of automatic systems under typical influences

4. Teaching materials and resources

1. Theory of Automatic Control: [textbook] / [Zaitsev G.F. et al.]. - Kyiv: Tekhnika, 2002. - 688 p.

2. Burova T.V. Handbook of Radio Automation / Burova T.V., Gradoboeva N.V., Zakharchenko M.V..- Kyiv: Tekhnika, 1992. – 440 p.

Educational content

5. Methodology for mastering the academic discipline (educational component)

LECTURE 1 Introduction Subject and objectives of the course. A brief history of the development of automatic control systems. 1.1. Basic concepts and definitions. 1.2. Functional diagram of a closed automatic system. 1.3. Classification of automatic systems.

LECTURE 2 Generalized functional and structural diagrams of a radio engineering tracking system. Rules for converting structural diagrams.

LECTURE 3 Transfer functions of a closed system. Tracking system as a filter

LECTURE 4 Mathematical methods for describing typical links. Non-inertial (amplifying, proportional) link. Inertial link (first-order aperiodic link). Integrating link

LECTURE 5 Excitation link. Oscillatory link.

LECTURE 6 General requirements for the stability of automatic systems. Algebraic stability criteria.

LECTURE 7 Frequency criteria for the stability of RA systems. Stability margin of RA systems.

LECTURE 8 Key indicators of ACS quality. Direct and indirect methods for assessing the quality of the transition process. Types of transition processes

LECTURE 9 Static and dynamic errors of typical ACS. Static error for typical ACS (static, astatic of the first and second orders). Astatic automatic control systems. Determination of dynamic errors (by speed, by acceleration) for static and astatic systems.

Laboratory work No. 1 Investigation of the reactions of typical links to various types of

influence Laboratory work No. 2 Investigation of the dynamic characteristics of typical links

Laboratory work No. 3 Frequency characteristics of dynamic links

Laboratory work No. 4 Investigation of the quality of control processes in a static system

6. Independent work of the student

Students must prepare in advance for laboratory work and independent work based on lecture materials. Before lectures, it is necessary to review the theoretical material provided in previous lectures. Before laboratory classes, it is necessary to review the relevant theoretical material.

Policy and control

7. Policy of the academic discipline (educational component)

Attendance at laboratory classes is mandatory. Students actively participate in class work. For objective reasons (e.g., prolonged illness, international internship), training may take place online in agreement with the course instructor. It is also possible to make up for missed classes during consultation hours.

All materials of laboratory work reports and MCRs submitted by applicants are checked for academic integrity.

8. Types of control and rating system for assessing learning outcomes (RSO)

44 points for modular control work - 1 MCW*44 points=44 points;

14 points for solving a laboratory assignment = 4 classes*14 points=56 points.

Table of correspondence between rating points and grades on the university scale

Number of points	Grade
100-95	Excellent
94	Very good
84	Good
74-65	Satisfactory
64-60	Sufficient
Less than 60	Unsatisfactory
Conditions for admission not met	Not admitted

9. Additional information on the discipline (educational component)

Description of material, technical, and informational support for the discipline

Laboratory work in the discipline "Radio Automation" is carried out in a computer classroom on modern computers in the MatLab software environment using the Simulink package. The classroom is equipped with 12 computers, which allows each student to work independently. The computer lab also has a large screen on which the instructor demonstrates and explains the implementation of more complex tasks in the simulation of radio automation systems. However, it is not prohibited to perform tasks on their own laptops if it is more convenient for students; for this purpose, there are specially designated seats without computers in the classroom.

The working program of the academic discipline (syllabus):

Compiled by [N. O. Laschevska](#); [S. O. Sokolsky](#);

Approved by the PRE Department (Minutes No. 06/2025 dated 06/24/2025)

Approved by the methodological commission of the faculty/research institute (protocol No. 06/2025 dated 25.06.2025)