
Department of Radio Engineering Systems

[RE-320] SOFTWARE INFRASTRUCTURE OF

DISTRIBUTED WEB APPLICATIONS

Course syllabus (Syllabus)

 Course details

Level of higher education First (bachelor's)

Field of knowledge 17 - Electronics, Automation, and Electronic Communications

Specialization 172 - Electronic Communications and Radio Engineering

Educational program All educational programs

Discipline status Elective (F-catalog)

Form of higher education

Year of training, semester
Full-time

Available for selection starting from the 3rd year, spring semester

Scope of the discipline 4 credits (Lectures 18 hours, Practical classes 36 hours,

Laboratory work 36 hours, Independent work 66 hours)

Semester

Control/control

measures
Credit

Class schedule https://schedule.kpi.ua

Language of instruction Ukrainian

Information about the

course

coordinator/teacher s

Course location

Lecturer: P. Yu. Katyn

Lab: Katin P. Yu.

https://schedule.kpi.ua/
http://rozklad.kpi.ua/Schedules/ViewSchedule.aspx?v=b083a31a-cc98-4d30-97ba-c4842c28e281
http://rozklad.kpi.ua/Schedules/ViewSchedule.aspx?v=b083a31a-cc98-4d30-97ba-c4842c28e281
http://rozklad.kpi.ua/Schedules/ViewSchedule.aspx?v=b083a31a-cc98-4d30-97ba-c4842c28e281

 Curriculum

1. Description of the course, its purpose, subject matter, and learning outcomes

The main objective of the discipline "Software Infrastructure of Distributed Web Applications" is

to provide systematic knowledge, skills, and abilities in planning, developing, testing, and

building software infrastructure based on:

- complex, distributed web application infrastructure based on ASP.NET Core MVC with using
Docker technology;

- complex, distributed web application infrastructure based on Python Django

using Docker technology.

In addition, the discipline provides information on the general principles of distributed web

application development and software infrastructure deployment based on container technology

systems.

The syllabus for the course "Software Infrastructure" includes educational tasks and programming

exercises. This allows students to gain practical experience in developing distributed web applications

and deploying infrastructure for them based on container technologies. Students are expected to

acquire knowledge in this field independently.

There is a standard approach to teaching programming, where in the early stages (programming

exercises) a relatively complex task is performed, which makes it possible to interest students in

further study. The final task is a distributed software infrastructure for a web application based

on Docker technology, which simulates the operation of a professional web portal. To complete

this task, students use the theoretical knowledge and practical skills they have acquired

throughout the course.

The aim of the course is to train highly qualified software developers who have a basic

understanding of software infrastructure based on modern technologies.

Subject of the course: the process of designing, developing, testing, and building a distributed

software infrastructure for a web application using a container system.

The study of the discipline contributes to the formation of professional competencies (PC) in

students, which are necessary for solving practical problems in professional activities related to the

development, improvement, and maintenance of intelligent information systems for processing

multimedia data:

Ability to identify, classify, and formulate software requirements;

Ability to participate in software design, including modeling (formal description) of its structure,

behavior, and operating processes;

Ability to develop architectures, modules, and components of software systems;

Ability to apply fundamental and interdisciplinary knowledge to successfully solve software

engineering problems;

Ability to accumulate, process, and systematize professional knowledge regarding the creation and

maintenance of software and recognition of the importance of lifelong learning;

Ability to implement phases and iterations of the software systems and information technology life

cycle based on appropriate software development models and approaches;

Ability to implement the system integration process, apply standards and change management procedures

to maintain the integrity, overall functionality, and reliability of software;

Ability to reasonably select and master software development and maintenance tools.

The study of the discipline contributes to the formation of the following program learning

outcomes (PLOs) for students in the educational program:

Analyze, purposefully search for and select information and reference resources and

knowledge necessary for solving professional tasks, taking into account modern

achievements in science and technology;

PRN03 Know the main processes, phases, and iterations of the software life cycle;

Know and apply professional standards and other regulatory documents in the field of software

engineering;

Know and apply relevant mathematical concepts, methods of domain, system, and object-

oriented analysis, and mathematical modeling for software development;

Know and apply in practice the fundamental concepts, paradigms, and basic principles of the

functioning of language, instrumental, and computational tools

software engineering;

Know and be able to develop human-machine interfaces;

Be able to use methods and tools for collecting, formulating, and analyzing software requirements;

Apply effective approaches to software design in practice;

Know and apply methods for developing algorithms, designing software, and

constructing data and knowledge structures;

Be motivated to choose programming languages and development technologies for solving

software creation and maintenance tasks;

Have skills in software development, coordination of design and release of all types of software

documentation;

Be able to calculate the economic efficiency of software systems.

2. Prerequisites and post-requisites of the discipline (place in the structural-

logical scheme of training under the relevant educational program)

Successful study of the discipline is preceded by the study of the disciplines "Informatics" and "OOP".

The theoretical knowledge and practical skills acquired during the study of the discipline ensure

the successful completion of course projects and bachelor's theses.

3. Contents of the discipline

Topic 1. Technologies and architecture of web applications based on typical frameworks.
Topic2. Software management of databases in web applications.
Topic 3. Containerization system as the basis for creating a complex distributed software infrastructure for

web applications.

Topic 4. Automation of software infrastructure management in a containerization system.

Topic 5. Microservice architecture as the basis for creating software infrastructure for distributed

web applications.

Modular test. Credit.

4. Teaching materials and resources

1. Designing Information Systems: General Issues of IS Design Theory (lecture notes) [Electronic resource]:

textbook for students majoring i n 122 "Computer Science" / Igor Sikorsky KPI; compiled by: O. S.

Kovalenko, L. M. Dobrovska. – Electronic text data (1 file: 2.02 MB). – Kyiv: Igor Sikorsky Kyiv

Polytechnic Institute, 2020. – 192 p. https://ela.kpi.ua/bitstream/123456789/33651/1/PIS_KL.pdf

2. Software infrastructure for WEB applications. Laboratory workshop

.\ ELAKPI: Software infrastructure for WEB applications. Laboratory workshop

Additional reading:

1. Django documentation [Electronic resource] –

https://docs.djangoproject.com/en/3.2/.

2. Adam Freeman. Essential Docker for ASP.NET Core MVC. ISBN-13 (pbk): 978-1-

4842-2777-0 ISBN-13 (electronic): 978-1-4842-2778-7. 2017.

3. Scott Chacon, Ben Straub. Pro Git. Version 2.1.95-2-g8d45587, January 19, 2022.

4. Esteban Zimányi. Students: Bubacarr Jallow Shafagh Kashef. Object Relational Mapping

and Entity Framework. Advanced Databases Project. 12/18/2018.

5. Rebeka Mukherjee. Python Scripting for System Administration. Department of Computer

Science and Engineering Netaji Subhash Engineering College, Kolkata.

6. https://docs.docker.com/samples/django/

7. Literature on ASP.NET Core technologies and software infrastructure

8. Freeman, Adam. F88 ASP.NET Core MVC 2 with C# Examples for Professionals. 7th ed.

Translated from English. St. Petersburg: Dialectica LLC, 2019. 1008 p.: ill. Parallel title in

English.

9. Adam Freeman. Pro ASP.NET Core 3: Develop Cloud-Ready Web Applications Using MVC,

Blazor, and Razor Pages. 2020.

10. Docker documentation [Electronic resource] –https://docs.docker.com/get-started/.

11. Matthes E. Python Crash Course (2nd Edition): A Hands-On, Project-Based

Introduction to Programming / Eric Matthes. – San Francisco, United States: No

Starch Press, US, 9. – 544 p. – (2nd Edition).

12. Thomas D. The Pragmatic Programmer: your journey to mastery, 20th

Anniversary Edition / D. Thomas, A. Hunt. – Boston, United States: Pearson

Education (US), 2020. – 352 p.

13. Learn Python the Hard Way: A Very Simple Introduction to the Terrifyingly

Beautiful World of Computers and Code – New Jersey, United States: Pearson

Education (US), 2013. – 320 p.

14. Learning React: Modern Patterns for Developing React Apps –

Sebastopol, United States: O'Reilly Media, Inc, USA, 2020. – 300 p.

https://ela.kpi.ua/bitstream/123456789/33651/1/PIS_KL.pdf
https://ela.kpi.ua/handle/123456789/53028
https://docs.djangoproject.com/en/3.2/
https://docs.docker.com/samples/django/
https://docs.docker.com/get-started/

15. Docker: Complete Guide To Docker For Beginners And Intermediates, 2020.

– 140 p.

16. Docker: Up & Running: Shipping Reliable Containers in Production – Sebastopol,

United States: O'Reilly Media, Inc, USA, 2018. – 347 p. Docker homepage -

http://www.docker.com/

17. Docker Hub - https://hub.docker.com

18. Docker blog - http://blog.docker.com/

19. Docker documentation - http://docs.docker.com/

20. Docker Getting Started Guide - http://www.docker.com/gettingstarted/

21. Docker code on GitHub - https://github.com/docker/docker

22. Docker mailing list - https://groups.google.com/forum/#!forum/docker#user

23. Docker on IRC: irc.freenode.net and channels #docker and #docker#dev

24. Docker on Twitter - http://twitter.com/docker

25. Get Docker help on Stack Overflow - http://stackoverflow.com/search?q=docker

26. Valeria Cardellini. Matteo Nardelli. Container-based virtualization: Docker. University of
Rome Tor Vergata Department of Civil Engineering and Computer Engineering Course on
Distributed Systems and Cloud Computing Academic Year 2017/18.

27. Adam Freeman. Pro Angular 6 .ISBN-13 (pbk): 978-1-4842-3648-2 ISBN-13

(electronic): 978-1-4842-3649-9/2018.

 Educational content

5. Methodology for mastering the academic discipline (educational component)

No

Type of educational activity

Description of the educational session

Topic 1. Technologies and architecture of web applications based on typical
frameworks.

1

Lecture 1. Technology for
creating web applications
based on typical frameworks
(Python Django, .NET Core).

Fundamentals of distributed web application
infrastructure.
Hardware component of infrastructure.
Containerization systems for deploying
complex distributed web applications.
Technology for creating web applications
based on typical frameworks (.NET Core).
Assignment for independent study: p. 6 No.
1.

2

Lecture 2. Software architecture
of a web application based on
typical Python Django templates

Web application architecture based on
the MVT framework pattern. Creating a
web application within a project.
Project testing. JavaScript technologies

http://www.docker.com/
https://hub.docker.com/
http://blog.docker.com/
http://docs.docker.com/
http://www.docker.com/gettingstarted/
https://github.com/docker/docker
https://groups.google.com/forum/%23!forum/docker#user
http://twitter.com/docker

(patterns). as an element of web application
architecture.
Assignment for independent study: p.6 No. 2.

 Practical work No. 1.1 Development and testing of a web application
based on a typical framework (2 hours).

3

Lecture 3. Software architecture
of a web application based on
.NET Core.

Architecture of a web application based on
the MVС framework pattern (.NET Core).
Creating a web application based on the
framework (.NET Core).
Basic components of .NET Core.

JavaScript technologies as an element of the

.NET Core web application architecture.

Homework assignment: p.6 No. 3.

4

Lecture 4. Deployment of a
web application on the
network as a complex
software infrastructure.

List and technologies for deploying web
applications on the network. Practice of
deploying a web application.
Using Docker containers to deploy web
applications. Fundamentals of
automation and scaling complex
software infrastructure.
Assignment for independent study: p.6 No. 4.

 Practical work No. 1.2 Development and testing of a web application
based on a typical framework (2 hours).

Topic 2. Software management of databases in web applications.

Lecture 5. Software
architecture of a typical object-
relational mapping (ORM) for
working with the database of
typical distributed web
applications.

Object-relational mapping (ORM) in a web
application based on the MVT framework
pattern (Python Django).
Database management in the Django
framework (mysite/settings.py). Creating
and activating a database model in the
Django framework.
Database management via Django API.
Creating, configuring, and testing the
admin panel. Testing the ORM database
model through the admin panel.
JavaScript technologies for working
with databases.

Using a Docker container to create a

software infrastructure that separates the

database and web application.

5

Lecture 6.
Entity Framework software
architecture for working with
databases in typical distributed
web applications.

Alternative technologies for working with
databases in a web application based on the
MVT framework pattern (Python Django).
Classification of database technology in .NET
Core.
Object-relational mapping (ORM) in a web
application based on the MVС framework
pattern (.NET Core).
Entity Framework in .NET technology.

JavaScript technologies for

working with databases

Assignments for

independent study: p.6 No.

6, 32.

 Practical work No. 2. Deploying a web application on the network
using free hosting (2 hours).

Topic 3. Containerization system as the basis for creating a complex distributed
software infrastructure for web applications.

6

Lecture 7. General configuration
of a prototype of a typical
distributed web application for
running in a container.

Installation of basic software components of
the infrastructure for working with the
container system in Django.
Display system based on the MVT
framework pattern (Python Django).
Request management system based on the
MVT framework (mysite.urls) Installation of
basic software components of the
infrastructure for working with the container
system in .NET Core.

Node.js, NPM Package, Git, Docker, .NET

Core Software Development Kit. Display

system based on the MVС framework

pattern (.NET Core). Request management

system based on the MVС framework (.NET

Core). Assignment for independent study:

p.6 No. 8.

7

Lecture 8.
Testing a prototype of a typical
distributed web application for
running in a container.

Testing basic software components of the
infrastructure for working with the container
system in Django.
Display system based on the MVT
framework pattern (Python Django).
Request management system based on the
MVT framework (mysite.urls) Testing basic
software components of the infrastructure
based on the MVС framework pattern (.NET
Core).
Installation of basic software components of
the infrastructure for working with the
container system in .NET Core.

Node.js, NPM Package, Git, Docker, .NET

Core Software Development Kit. Display

system based on the MVC framework

pattern (.NET Core). Request management

system based on the MVC framework (.NET

Core). Assignment for independent work:

p.6 No. 9.
 Practical work No. 3.1 Designing a Docker container for deploying

and developing a web application (2 hours).

Topic 4. Automation of software infrastructure management in a containerization
system

8

Lecture 9. Fundamentals of
distributed software
infrastructure based on
containerization systems.

General architecture of a
containerization system based on
Docker. Managing Docker images.
Container states.
Basic commands and examples of using
Docker based on a typical distributed web
application.
Assignment for independent study: p.6 No.
11.

9

Lecture 10. Automation of
management using Dockerfile.

Basics of working with
Dockerfile. Syntax and
rules for creating
Dockerfile.
Practical use of Dockerfile for complex
software infrastructure. Assignment for
independent study: p.6 No. 12.

 Practical work No. 3.2 Designing a Docker container for deploying
and developing a web application (2 hours).

10

Lecture 11. Basic elements of
the Docker network.

General software infrastructure of
distributed web applications in the Docker
network.

Docker network

management.

Assignment for

independent study:

p.6 No. 13

11

Lecture 12. Automation of
complex software
infrastructure management
based on Docker Compose
and Swarm mode technology.

Installing the Docker Compose system
Starting and stopping the Docker Compose
system. Basic syntax of the Docker Compose
file.
Automating management using Swarm
mode. Scaling complex software
infrastructure.
Testing complex software
infrastructure. Managing services in
complex software infrastructure.
Load balancing in complex software
infrastructure. Manage Services commands.
Assignment for independent study: p.6 No.
14.

 Practical work No. 4.1 Decomposition of complex software
architecture of a web application into
separate services and development of
microservice architecture (2 hours).

Topic 5. Microservice architecture as the basis for creating the software infrastructure
of distributed web applications

12

Lecture 13. Fundamentals of
microservice architecture.

General description of
microservice architecture.
Advantages of microservice
architecture.
Disadvantages of
microservice architecture.

Assignment for
independent study: p.6 No.
15.

13

Lecture 14. Software
infrastructure based on
microservices.

Horizontal scaling of software infrastructure
based on microservices (X-Axis Scaling).
Vertical scaling of software infrastructure
based on microservices (Y-Axis Scaling).
Scaling software infrastructure based on
microservices (Z-Axis Scaling).
Assignment for independent study: p.6
No. 16.

14

Lecture 15. Typical
microservice architecture
patterns in complex
distributed infrastructure.

Aggregator Pattern.
Proxy Pattern.
Chained Pattern.
Branch Microservice Pattern.
Shared Resource Pattern.
Assignment for independent
study: p.6 No. 17.

 Practical work No. 4.2 Decomposition of complex software
architecture of a web application into
separate services and development of
microservice architecture (2 hours).

16 Lecture 16. Lecture-seminar.
Reports on distributed
infrastructure.

 Practical work No. 5. Creating a software infrastructure based on
Docker containers for deploying and managing
complex software architecture (4 hours).

17 Lecture 17. Lecture-seminar.
Reports on distributed
infrastructure management.

Test

6. Independent work

The discipline is based on independent preparation for classroom sessions on theoretical and practical topics.

No Title of the topic for independent study Number
of hours

Literature

1 Preparation for lecture 1 1 1;1-7

2 Preparation for computer workshop 1 1.5 1;1-27

3 Preparation for lecture 2 1 1;1-7

4 Preparation for Lecture 3 1 1;8-9

5 Preparation for computer workshop 1 (part 2) 1.5 1;1-27

6 Preparation for lecture 4 1 1;1-27

7 Preparation for Lecture 5 1 1;1-27

8 Preparation for computer workshop 2 1.5 1;1-27

9 Preparation for lecture 6 1 1;1-27

10 Preparation for Lecture 7 1 1;1-27

11 Preparation for computer workshop 3 1.5 1;1-27

12 Preparation for Lecture 8 1 1;1-27

13 Preparation for Lecture 9 1 1;1-27

14 Preparation for computer workshop 4 (part 1) 1.5 1;1-27

15 Preparation for lecture 10 1 1;1-27

16 Preparation for lecture 11 1 1;1-27

17 Preparation for computer workshop 4 (part 2) 1.5 1;1-27

1 Preparation for lecture 12 1 1;1-27

19 Preparation for lecture 13 1 1;1-27

20 Preparation for computer workshop 5 (part 1) 1 1;1-27

21 Preparation for lecture 14 1 1;1-27

22 Preparation for lecture 15 1 1;1-27

23 Preparation for computer workshop 5 (part 2) 1.5 1;1-27

24 Preparation for lecture 16 (lecture-seminar) 1 1, 1-27

25 Preparation for lecture 17 (lecture-seminar) 1 1, 1-27

26 Preparation for the module test (part 1) 1 1, 1-27

2 Preparation for modular test (part 1) 4 1;1-27

2 Preparation for the exam 6 1, 1-27

29 List of frameworks for creating web applications based on different
programming languages.

6 1, 1-26

30 Distributed version control systems. 4 3

31 Technologies and practices for working with HTML5 and related
technologies.

2.5 27

32 Fundamentals of computer network organization. 13 27

 Policy and control

7. Academic discipline policy (educational component)

Attendance at lectures is mandatory. In exceptional circumstances, attendance at lectures and

other aspects of policy may be subject to change.

Attendance at computer lab classes may be sporadic and, if necessary, for consultation/defense of

computer lab work.

Rules of conduct in class: be active, respect others, turn off phones. Follow the academic integrity policy.

Rules for defending computer lab work: work must be done in accordance with the tasks set and according to

the option.

The rules for awarding incentive and penalty points are as follows. Incentive points are awarded for:

- accurate and complete answers in surveys based on lecture materials (maximum number of points for

a survey is 3 points).

8. Types of control and rating system for assessing learning outcomes (RSO)

During the semester, students complete 5 computer workshops. The maximum number of points for

each computer workshop is 10 points.

Points are awarded for:

- quality of computer workshop performance: 0-5 points;

- answers during the defense of the computer workshop: 0-3 points;

- timely submission of work for defense: 0-2 points. Criteria for assessing the quality of

performance:

5 points – the work is done well and in full;

4 points – the work is done well, in full, but has some flaws;

3 points – the work is completed in full, but contains minor errors; 2 points – the work is

completed in full, but contains significant errors; 0 points – the work is not completed in full.

Criteria for evaluating answers:

3 points – the answer is complete and well-reasoned;

2 points – the answer is correct but has shortcomings or minor

errors; 1 point – the answer contains significant errors;

0 points – no answer or incorrect answer.

Criteria for assessing the timeliness of submitting work for defense:

2 points – the work is submitted for defense no later than the specified

deadline; 0 points – the work is submitted for defense later than the

specified deadline.

Maximum number of points for completing and defending computer practicals: 10 points ×

5 computer practicals = 50 points.

During the semester, quizzes on the topic of the current lesson are held during lectures. Maximum

number of points for all quizzes: 3 points. The number of quizzes on the topic of the current

lesson for one student is unlimited.

The module test consists of 3 theoretical and 2 practical questions. Each question is worth 10

points. The criteria for evaluating each question on the test are as follows:

9-10 points – the answer is correct, complete, and well-reasoned;

7-8 points – the answer is correct, detailed, but not very well argued; 5-6 points –

the answer is generally correct, but has shortcomings;

3-4 points – the answer contains minor errors; 1-2 points – the answer contains

significant errors;

0 points – no answer or incorrect answer.

Maximum number of points for the

module test:

10 points × 5 questions = 50 points. The

rating scale for the discipline is:

R = RC = 50 points + 50 points = 100 points.

Calendar control: conducted twice per semester as monitoring of the current status of syllabus

requirements.

At the first assessment (8th week), the student receives a "pass" if their current rating is at least 15 points

(50% of the maximum number of points a student can receive before the first assessment).

At the second assessment (14th week), the student receives a "pass" if their current rating is at least 20

points (50% of the maximum number of points that a student can receive before the second assessment).

Semester assessment: credit

Conditions for admission to semester control:

With a semester rating (RC) of at least 60 points and all computer workshop assignments completed,

the student automatically receives a credit according to the table (Table of correspondence between

rating points and grades on the university scale). Otherwise, they must complete a credit test.

A prerequisite for admission to the credit test is the completion and defense of the computer workshop.

If a student does not agree with the automatic grade, they can try to improve their grade by writing a credit

test, in which case their points earned during the semester are retained, and the better of the two grades

received by the student is awarded (a "soft" grading system).

Table of correspondence between rating points and grades on the university scale

Number of points Grade

100-95 Excellent

94-85 Very good

84-75 Good

74-65 Satisfactory

64-60 Sufficient

Less than 60 Unsatisfactory

Admission requirements not met Not admitted

9. Additional information on the discipline (educational component)

Various operating systems may be used for work at the student's discretion and in agreement with

the instructor.

If students wish to use other programming languages or technologies in the computer lab, they can be

included as an additional element in the basic architecture of the distributed web application.

Description of material, technical, and information support for the discipline

Computer classroom of the Department of Radio Engineering Systems

Work program of the academic discipline (syllabus):

Compiled by Katin P. Yu.;

Approved by the Department of Radio Engineering Systems (Minutes No. 06/2024 dated 06/27/2024)

Approved by the methodological commission of the faculty/research institute (protocol No.

06/2024 dated 28.06.2024)

http://rozklad.kpi.ua/Schedules/ViewSchedule.aspx?v=b083a31a-cc98-4d30-97ba-c4842c28e281

