gu HauioHanbHUI TEXHIYHUI YHiBEpCUTET YKpaiHU
«KUTBCbKUIW MNONITEXHIYHUW IHCTUTYT
ag imeHi ITOPA CIKOPCbKOIO»

[RE-320] SOFTWARE INFRASTRUCTURE OF
DISTRIBUTED WEB APPLICATIONS

—

2

Department of Radio Engineering Systems

e\
Course syllabus (Syllabus)

Course details

Level of higher education First (bachelor's)

Field of knowledge 17 - Electronics, Automation, and Electronic Communications
Specialization 172 - Electronic Communications and Radio Engineering
Educational program All educational programs

Discipline status Elective (F-catalog)

Form of higher education Full-time

Year of training, semester

Available for selection starting from the 3rd year, spring semester

Scope of the discipline 4 credits (Lectures 18 hours, Practical classes 36 hours,
Laboratory work 36 hours, Independent work 66 hours)

Semester

Control/control Credit

measures

Class schedule https://schedule.kpi.ua

Language of instruction Ukrainian

Information about the
course
coordinator/teacher s Lab: Katin P. Yu.

Lecturer: P. Yu. Katyn

Course location

https://schedule.kpi.ua/
http://rozklad.kpi.ua/Schedules/ViewSchedule.aspx?v=b083a31a-cc98-4d30-97ba-c4842c28e281
http://rozklad.kpi.ua/Schedules/ViewSchedule.aspx?v=b083a31a-cc98-4d30-97ba-c4842c28e281
http://rozklad.kpi.ua/Schedules/ViewSchedule.aspx?v=b083a31a-cc98-4d30-97ba-c4842c28e281

Curriculum

1. Description of the course, its purpose, subject matter, and learning outcomes

The main objective of the discipline "Software Infrastructure of Distributed Web Applications" is
to provide systematic knowledge, skills, and abilities in planning, developing, testing, and
building software infrastructure based on:

- complex, distributed web application infrastructure based on ASP.NET Core MVC with using
Docker technology;

- complex, distributed web application infrastructure based on Python Django
using Docker technology.

In addition, the discipline provides information on the general principles of distributed web
application development and software infrastructure deployment based on container technology
systems.

The syllabus for the course "Software Infrastructure" includes educational tasks and programming
exercises. This allows students to gain practical experience in developing distributed web applications
and deploying infrastructure for them based on container technologies. Students are expected to
acquire knowledge in this field independently.

There is a standard approach to teaching programming, where in the early stages (programming
exercises) a relatively complex task is performed, which makes it possible to interest students in
further study. The final task is a distributed software infrastructure for a web application based
on Docker technology, which simulates the operation of a professional web portal. To complete
this task, students use the theoretical knowledge and practical skills they have acquired
throughout the course.

The aim of the course is to train highly qualified software developers who have a basic
understanding of software infrastructure based on modern technologies.

Subject of the course: the process of designing, developing, testing, and building a distributed
software infrastructure for a web application using a container system.

The study of the discipline contributes to the formation of professional competencies (PC) in
students, which are necessary for solving practical problems in professional activities related to the
development, improvement, and maintenance of intelligent information systems for processing
multimedia data:

Ability to identify, classify, and formulate software requirements;
Ability to participate in software design, including modeling (formal description) of its structure,

behavior, and operating processes;

Ability to develop architectures, modules, and components of software systems;
Ability to apply fundamental and interdisciplinary knowledge to successfully solve software
engineering problems;

Ability to accumulate, process, and systematize professional knowledge regarding the creation and
maintenance of software and recognition of the importance of lifelong learning;

Ability to implement phases and iterations of the software systems and information technology life
cycle based on appropriate software development models and approaches;

Ability to implement the system integration process, apply standards and change management procedures

to maintain the integrity, overall functionality, and reliability of software;
Ability to reasonably select and master software development and maintenance tools.

The study of the discipline contributes to the formation of the following program learning
outcomes (PLOs) for students in the educational program:

Analyze, purposefully search for and select information and reference resources and
knowledge necessary for solving professional tasks, taking into account modern
achievements in science and technology;

PRNO3 Know the main processes, phases, and iterations of the software life cycle;

Know and apply professional standards and other regulatory documents in the field of software
engineering;

Know and apply relevant mathematical concepts, methods of domain, system, and object-
oriented analysis, and mathematical modeling for software development;

Know and apply in practice the fundamental concepts, paradigms, and basic principles of the
functioning of language, instrumental, and computational tools

software engineering;

Know and be able to develop human-machine interfaces;

Be able to use methods and tools for collecting, formulating, and analyzing software requirements;
Apply effective approaches to software design in practice;

Know and apply methods for developing algorithms, designing software, and

constructing data and knowledge structures;

Be motivated to choose programming languages and development technologies for solving
software creation and maintenance tasks;

Have skills in software development, coordination of design and release of all types of software
documentation;

Be able to calculate the economic efficiency of software systems.

2. Prerequisites and post-requisites of the discipline (place in the structural-
logical scheme of training under the relevant educational program)

Successful study of the discipline is preceded by the study of the disciplines "Informatics" and "OOP".

The theoretical knowledge and practical skills acquired during the study of the discipline ensure
the successful completion of course projects and bachelor's theses.

3. Contents of the discipline

Topic 1. Technologies and architecture of web applications based on typical frameworks.

Topic2. Software management of databases in web applications.

Topic 3. Containerization system as the basis for creating a complex distributed software infrastructure for
web applications.

Topic 4. Automation of software infrastructure management in a containerization system.

Topic 5. Microservice architecture as the basis for creating software infrastructure for distributed

web applications.

Modular test. Credit.
4. Teaching materials and resources

1. Designing Information Systems: General Issues of IS Design Theory (lecture notes) [Electronic resource]:
textbook for students majoring i n 122 "Computer Science" / Igor Sikorsky KPl; compiled by: O. S.
Kovalenko, L. M. Dobrovska. — Electronic text data (1 file: 2.02 MB). — Kyiv: Igor Sikorsky Kyiv
Polytechnic Institute, 2020. — 192 p. https://ela.kpi.ua/bitstream/123456789/33651/1/PIS KL.pdf

2. Software infrastructure for WEB applications. Laboratory workshop
\ ELAKPI: Software infrastructure for WEB applications. Laboratory workshop

Additional reading:

1. Django documentation [Electronic resource] —

https://docs.djangoproject.com/en/3.2/.

2. Adam Freeman. Essential Docker for ASP.NET Core MVC. ISBN-13 (pbk): 978-1-
4842-2777-0 ISBN-13 (electronic): 978-1-4842-2778-7. 2017.

3. Scott Chacon, Ben Straub. Pro Git. Version 2.1.95-2-g8d45587, January 19, 2022.

4. Esteban Zimdnyi. Students: Bubacarr Jallow Shafagh Kashef. Object Relational Mapping
and Entity Framework. Advanced Databases Project. 12/18/2018.

5. Rebeka Mukherjee. Python Scripting for System Administration. Department of Computer
Science and Engineering Netaji Subhash Engineering College, Kolkata.

6. https.//docs.docker.com/samples/django/

7. Literature on ASP.NET Core technologies and software infrastructure

8. Freeman, Adam. F88 ASP.NET Core MVC 2 with C# Examples for Professionals. 7th ed.
Translated from English. St. Petersburg: Dialectica LLC, 2019. 1008 p.: ill. Parallel title in
English.

9. Adam Freeman. Pro ASP.NET Core 3: Develop Cloud-Ready Web Applications Using MVC,
Blazor, and Razor Pages. 2020.

10. Docker documentation [Electronic resource] —https://docs.docker.com/qget-started/.

11. Matthes E. Python Crash Course (2nd Edition): A Hands-On, Project-Based
Introduction to Programming / Eric Matthes. — San Francisco, United States: No
Starch Press, US, 9. — 544 p. — (2nd Edition).

12. Thomas D. The Pragmatic Programmer: your journey to mastery, 20th
Anniversary Edition /D. Thomas, A. Hunt. — Boston, United States: Pearson
Education (US), 2020. — 352 p.

13. Learn Python the Hard Way: A Very Simple Introduction to the Terrifyingly
Beautiful World of Computers and Code — New Jersey, United States: Pearson
Education (US), 2013. — 320 p.

14. Learning React: Modern Patterns for Developing React Apps —

Sebastopol, United States: O'Reilly Media, Inc, USA, 2020. — 300 p.

https://ela.kpi.ua/bitstream/123456789/33651/1/PIS_KL.pdf
https://ela.kpi.ua/handle/123456789/53028
https://docs.djangoproject.com/en/3.2/
https://docs.docker.com/samples/django/
https://docs.docker.com/get-started/

15.

Docker: Complete Guide To Docker For Beginners And Intermediates, 2020.

— 140 p.

1e6.

Docker: Up & Running: Shipping Reliable Containers in Production — Sebastopol,

United States: O'Reilly Media, Inc, USA, 2018. — 347 p. Docker homepage -

http://www.docker.com/

17.

18.

19.

20.

21.

22.

23.

24.

Docker Hub - https://hub.docker.com

Docker blog - http://blog.docker.com/

Docker documentation - http://docs.docker.com/

Docker Getting Started Guide - http://www.docker.com/gettingstarted/

Docker code on GitHub - https://github.com/docker/docker

Docker mailing list - https://groups.google.com/forum/#!forum/docker#user

Docker on IRC: irc.freenode.net and channels #docker and #docker#dev

Docker on Twitter - http://twitter.com/docker

25. Get Docker help on Stack Overflow - http://stackoverflow.com/search?q=docker

26.

27.

Valeria Cardellini. Matteo Nardelli. Container-based virtualization: Docker. University of
Rome Tor Vergata Department of Civil Engineering and Computer Engineering Course on
Distributed Systems and Cloud Computing Academic Year 2017/18.

Adam Freeman. Pro Angular 6 .ISBN-13 (pbk): 978-1-4842-3648-2 ISBN-13
(electronic): 978-1-4842-3649-9/2018.

Educational content

5. Methodology for mastering the academic discipline (educational component)

No Type of educational activity Description of the educational session

Topic 1. Technologies and architecture of web applications based on typical

frameworks.

Fundamentals of distributed web application
Lecture 1. Technology for infrastructure.

1 creating web applications Hardware component of infrastructure.
based on typical frameworks Containerization systems for deploying
(Python Django, .NET Core). complex distributed web applications.

Technology for creating web applications
based on typical frameworks (.NET Core).
Assignment for independent study: p. 6 No.
1.

Web application architecture based on

> Lecture 2. Software architecture |the MVT framework pattern. Creating a
of a web application based on web application within a project.
typical Python Django templates |Project testing. JavaScript technologies

http://www.docker.com/
https://hub.docker.com/
http://blog.docker.com/
http://docs.docker.com/
http://www.docker.com/gettingstarted/
https://github.com/docker/docker
https://groups.google.com/forum/%23!forum/docker#user
http://twitter.com/docker

(patterns).

as an element of web application

architecture. .
Assignment for independent study: p.6 No. 2.

Practical work No. 1.1

Development and testing of a web application
based on a typical framework (2 hours).

Lecture 3. Software architecture
of a web application based on
.NET Core.

Architecture of a web application based on
the MVC framework pattern (.NET Core).
Creating a web application based on the
framework (.NET Core).

Basic components of .NET Core.

JavaScript technologies as an element of the
.NET Core web application architecture.
Homework assignment: p.6 No. 3.

Lecture 4. Deployment of a
web application on the
network as a complex
software infrastructure.

List and technologies for deploying web
applications on the network. Practice of
deploying a web application.

Using Docker containers to deploy web
applications. Fundamentals of
automation and scaling complex

software infrastructure.
Assignment for independent study: p.6 No. 4.

Practical work No. 1.2

Development and testing of a web application
based on a typical framework (2 hours).

Topic 2. Software management of databases in web applications.

Lecture 5. Software
architecture of a typical object-
relational mapping (ORM) for
working with the database of
typical distributed web
applications.

Object-relational mapping (ORM) in a web
application based on the MVT framework
pattern (Python Django).

Database management in the Django
framework (mysite/settings.py). Creating
and activating a database model in the
Django framework.

Database management via Django API.
Creating, configuring, and testing the
admin panel. Testing the ORM database
model through the admin panel.

JavaScript technologies for working

with databases.

Using a Docker container to create a
software infrastructure that separates the
database and web application.

Lecture 6.

Entity Framework software
architecture for working with
databases in typical distributed
web applications.

Alternative technologies for working with
databases in a web application based on the
MVT framework pattern (Python Django).
Classification of database technology in .NET
Core.

Object-relational mapping (ORM) in a web
application based on the MVC framework
lpattern (.NET Core).

Entity Framework in .NET technology.

JavaScript technologies for

working with databases
Assignments for
independent study: p.6 No.
6, 32.

Practical work No. 2.

Deploying a web application on the network

using free hosting (2 hours).

ic 3. Contai er/ztat/o? rvste
SO tware infrastructure wi

eénapp icati

Poarsr_lss for creating a complex distributed

Lecture 7. General configuration
6 of a prototype of a typical
distributed web application for
running in a container.

Installation of basic software components of
the infrastructure for working with the
container system in Django.

Display system based on the MVT
framework pattern (Python Django).
Request management system based on the
MVT framework (mysite.urls) Installation of
basic software components of the
infrastructure for working with the container
system in .NET Core.

Node.js, NPM Package, Git, Docker, .NET
Core Software Development Kit. Display
system based on the MVC framework
pattern (.NET Core). Request management
system based on the MV C framework (.NET
Core). Assignment for independent study:
p.6 No. 8.

Lecture 8.

7 Testing a prototype of a typical
distributed web application for
running in a container.

Testing basic software components of the
infrastructure for working with the container
system in Django.

Display system based on the MVT
framework pattern (Python Django).
Request management system based on the
MVT framework (mysite.urls) Testing basic
software components of the infrastructure
based on the MVC framework pattern (.NET
Core).

Installation of basic software components of
the infrastructure for working with the
container system in .NET Core.

Node.js, NPM Package, Git, Docker, .NET
Core Software Development Kit. Display
system based on the MVC framework
pattern (.NET Core). Request management
system based on the MVC framework (.NET
Core). Assignment for independent work:
p.6 No. 9.

Practical work No. 3.1

Designing a Docker container for deploying

and developing a web application (2 hours).

Zy?ﬁ’é:ng Automation of software infrastructure management in a containerization

Lecture 9. Fundamentals of

General architecture of a
containerization system based on
Docker. Managing Docker images.

i distributed software Container states.
infrastructure based on Basic commands and examples of using
containerization systems. Docker based on a typical distributed web
application.
é\isignmentfor independent study: p.6 No.
Basics of working with
9 Lecture 10. Automation of Dockerfile. Syntax and
management using Dockerfile. |rules for creating
Dockerfile.
Practical use of Dockerfile for complex
software infrastructure. Assignment for
independent study: p.6 No. 12.
Practical work No. 3.2 Designing a Docker container for deploying
and developing a web application (2 hours).
General software infrastructure of
10 Lecture 11. Basic elements of distributed web applications in the Docker
the Docker network. network.
Docker network
management.
Assignment for
independent study:
p.6 No. 13
Installing the Docker Compose system
Starting and stopping the Docker Compose
system. Basic syntax of the Docker Compose
file.
Lecture 12. Automation of |Aytomating management using Swarm
11 complex software mode. Scaling complex software
infrastructure management infrastructure.

based on Docker Compose
and Swarm mode technology.

Testing complex software

infrastructure. Managing services in
complex software infrastructure.

Load balancing in complex software
infrastructure. Manage Services commandes.
Assignment for independent study: p.6 No.
14.

Practical work No. 4.1

Decomposition of complex software
architecture of a web application into
separate services and development of
microservice architecture (2 hours).

BRels b ieiisty s Slchissriure os the

basis for creating the software infrastructure

12

Lecture 13. Fundamentals of
microservice architecture.

General description of
microservice architecture.
lAdvantages of microservice
architecture.
Disadvantages of
microservice architecture.

Assignment for

independent study: p.6 No.

15.

Horizontal scaling of software infrastructure
based on microservices (X-Axis Scaling).

Lecture 14. Software Vertical scaling of software infrastructure

13 infrastructure based on based on microservices (Y-Axis Scaling).

microservices. Scaling software infrastructure based on

microservices (Z-Axis Scaling).
Assignment for independent study: p.6
No. 16.
Aggregator Pattern.
Proxy Pattern.

14 Lecture 15. Typical Chained Pattern.

microservice architecture Branch Microservice Pattern.

patterns in complex Shared Resource Pattern.

distributed infrastructure. Assignment for independent
study: p.6 No. 17.

Practical work No. 4.2 Decomposition of complex software
architecture of a web application into
separate services and development of
microservice architecture (2 hours).

16 Lecture 16. Lecture-seminar.

Reports on distributed

infrastructure.

Practical work No. 5. Creating a software infrastructure based on
Docker containers for deploying and managing
complex software architecture (4 hours).

17 Lecture 17. Lecture-seminar.
Reports on distributed
infrastructure management.

Test

6. Independent work

The discipline is based on independent preparation for classroom sessions on theoretical and practical topics.

No |Title of the topic for independent study Number Literature
of hours

T Preparation jor lecture 1 T 1,1-7

2 Preparation for computer workshop 1 1.5 1,1-27

3 Preparation jor lecture 2 v 1, 1-7

T Preparation jor Lecture 3 v 1,8-9

5 Preparation jor computer workshop 1 (part 2] 1.5 1,1-27

6 Preparation jor lecture 4 T 1,1-27

7 Preparation jor Lecture 5 T 1,1-27

8 Preparation jor computer workshop 2 1.5 1,1-27
g Preparation jor lecture 6 i T,1-27
10 Preparation Jjor Lecture 7 vi 1,1-27
TI1 Preparation jor computer workshop 3 1.5 1,1-27
12 \Preparation jor Lecture 8 v 1,1-27
I3 Preparation jor Lecture 9 yi 1,1-27
14 Preparation Jor computer workshop & (part 1) 1.5 1,1-27
15 \Preparation jor lecture 10 vi 1,1-27
16 Preparation for lecture 11 L 1,1-2/
17 Preparation jor computer workshop 4 (part ZJ 1.5 1;1-27
Vi Preparation jor lecture 12 vi 1;1-27
19 \Preparation jor lecture 13 v 1,1-27
20U \Preparation for computer workshop 5 (part 1) 1 1,1-2/7
21 Preparation for lecture 14 L 1,1-2/
22 \Preparation jor lecture 15 L 1,1-2/
23~ \Preparation Jor computer workshop 5 (part 2] 1.5 1,1-27
2 \Preparation jor lecture 16 (lecture-seminar) vi 1, 1-27
25 \Preparation jor lecture 17/ (lecture-seminar) 1 1, 1-27
26 Preparation jor the module test (part 1) vi 1, 1-27
2 Preparation jor modular test (part 1) z 1,1-27
2 Preparation jor the exam 6 1, 1-27
29 |LIST Of JrameworKks jor creating web applications based on dijferentio 1, 1-26
iprogramming languages.
30 Distributed version control systems. z 3
e t{gé: A’lggggilee;s' and practices jor working with HTIVIL5 and related 2.5 27
32 [Fundamentals of computer network organization. 13 27

Policy and control

7. Academic discipline policy (educational component)

Attendance at lectures is mandatory. In exceptional circumstances, attendance at lectures and

other aspects of policy may be subject to change.

Attendance at computer lab classes may be sporadic and, if necessary, for consultation/defense of
computer lab work.

Rules of conduct in class: be active, respect others, turn off phones. Follow the academic integrity policy.

Rules for defending computer lab work: work must be done in accordance with the tasks set and according to
the option.

The rules for awarding incentive and penalty points are as follows. Incentive points are awarded for:

- accurate and complete answers in surveys based on lecture materials (maximum number of points for
a survey is 3 points).

8. Types of control and rating system for assessing learning outcomes (RSO)

During the semester, students complete 5 computer workshops. The maximum number of points for
each computer workshop is 10 points.

Points are awarded for:
- quality of computer workshop performance: 0-5 points;
- answers during the defense of the computer workshop: 0-3 points;
- timely submission of work for defense: 0-2 points. Criteria for assessing the quality of
performance:
5 points — the work is done well and in full;
4 points — the work is done well, in full, but has some flaws;
3 points — the work is completed in full, but contains minor errors; 2 points — the work is
completed in full, but contains significant errors; O points —the work is not completed in full.
Criteria for evaluating answers:
3 points — the answer is complete and well-reasoned;
2 points — the answer is correct but has shortcomings or minor
errors; 1 point — the answer contains significant errors;
0 points — no answer or incorrect answer.
Criteria for assessing the timeliness of submitting work for defense:
2 points — the work is submitted for defense no later than the specified
deadline; 0 points — the work is submitted for defense later than the
specified deadline.
Maximum number of points for completing and defending computer practicals: 10 points x
5 computer practicals = 50 points.

During the semester, quizzes on the topic of the current lesson are held during lectures. Maximum
number of points for all quizzes: 3 points. The number of quizzes on the topic of the current
lesson for one student is unlimited.

The module test consists of 3 theoretical and 2 practical questions. Each question is worth 10
points. The criteria for evaluating each question on the test are as follows:

9-10 points — the answer is correct, complete, and well-reasoned;

7-8 points — the answer is correct, detailed, but not very well argued; 5-6 points —
the answer is generally correct, but has shortcomings;

3-4 points —the answer contains minor errors; 1-2 points — the answer contains
significant errors;

O points — no answer or incorrect answer.

Maximum number of points for the

module test:

10 points x 5 questions = 50 points. The

rating scale for the discipline is:

R = Rc =50 points + 50 points = 100 points.

Calendar control: conducted twice per semester as monitoring of the current status of syllabus
requirements.

At the first assessment (8th week), the student receives a "pass" if their current rating is at least 15 points
(50% of the maximum number of points a student can receive before the first assessment).

At the second assessment (14th week), the student receives a "pass" if their current rating is at least 20
points (50% of the maximum number of points that a student can receive before the second assessment).

Semester assessment: credit
Conditions for admission to semester control:

With a semester rating (Rc) of at least 60 points and all computer workshop assignments completed,
the student automatically receives a credit according to the table (Table of correspondence between
rating points and grades on the university scale). Otherwise, they must complete a credit test.

A prerequisite for admission to the credit test is the completion and defense of the computer workshop.

If a student does not agree with the automatic grade, they can try to improve their grade by writing a credit
test, in which case their points earned during the semester are retained, and the better of the two grades
received by the student is awarded (a "soft" grading system).

Table of correspondence between rating points and grades on the university scale

Number of points Grade
100-95 Excellent

94-85 Very good
84-75 Good

74-65 Satisfactory
64-60 Sufficient

Less than 60 Unsatisfactory

Admission requirements not met Not admitted

9. Additional information on the discipline (educational component)

Various operating systems may be used for work at the student's discretion and in agreement with

the instructor.

If students wish to use other programming languages or technologies in the computer lab, they can be
included as an additional element in the basic architecture of the distributed web application.

Description of material, technical, and information support for the discipline

Computer classroom of the Department of Radio Engineering Systems

Work program of the academic discipline (syllabus):

Compiled by Katin P. Yu.;

Approved by the Department of Radio Engineering Systems (Minutes No. 06/2024 dated 06/27/2024)
Approved by the methodological commission of the faculty/research institute (protocol No.

06/2024 dated 28.06.2024)

http://rozklad.kpi.ua/Schedules/ViewSchedule.aspx?v=b083a31a-cc98-4d30-97ba-c4842c28e281

