



## [RE-43] INDUSTRIAL DESIGN



### Curriculum of the academic discipline (Syllabus)

#### Course details

|                            |                                                                     |
|----------------------------|---------------------------------------------------------------------|
| Level of higher education  | First (bachelor's)                                                  |
| Field of knowledge         | 17 - Electronics, automation, and electronic communications         |
| Specialization             | 172 - Electronic communications and radio engineering               |
| Educational program        | All educational programs                                            |
| Discipline status          | Elective (F-catalog)                                                |
| Form of higher education   | Full-time                                                           |
| Year of training, semester | Available for selection starting from the 4th year, spring semester |

Scope of the discipline      4 credits (Lectures 18 hours, Practical classes 36 hours,  
Laboratory work 36 hours, Independent work 66 hours)

Semester  
Control/control  
measures

Class schedule

<https://schedule.kpi.ua>

Language of instruction

Ukrainian

Information about  
the course  
leader/teachers

Lecturer: [Y. L. Zinger](#),  
Lab: [Y. L. Zinger](#),  
Independent work: [Y. L. Zinger](#)

Course location

<https://classroom.google.com/c/NTc4MzE0ODkxNzQx?cjc=wioclxc>

#### Curriculum

##### 1. Description of the course, its purpose, subject matter, and learning outcomes

Industrial design combines engineering and creative components, product concept development, and all stages of product development, from idea to production.

Every object you interact with every day in your home, office, university, or public spaces is the result of a design process during which thousands of decisions were made by an industrial designer (and their team) aimed at improving your life through well-designed construction.

Knowledge and understanding of industrial design enable the development of the most user-friendly device for our users.

## **2. Prerequisites and post-requisites of the discipline (place in the structural-logical scheme of training under the relevant educational program)**

Students must be able to work in SolidWorks (discipline "Three-dimensional modeling of REA"). Have an understanding of production and technological processes.

### **3. Content of the discipline**

The content of the discipline is presented in a tandem of lectures and practical classes, since the lecture material is inextricably linked to the tasks and topics of the practical classes.

Topic 1. Introduction to industrial design.

- Introduction. What is industrial design?
- Choosing a topic for the discipline. Justification of the need for your device.

Topic 2. Ergonomics in industrial design.

- Ergonomics.
- Preliminary proposal. Selection and justification of the best design option. • Ergonomic systems.
- Modeling the device body in a software environment for 3D modeling (SolidWorks). • Design evolution and common design mistakes.
- Rendering.

Topic 3. Instructions (user manual).

- What is a device instruction (user manual)?
- Developing the structure of device instructions.
- Review and discussion of examples and mistakes in instructions. • Developing device instructions and testing them.

Topic 4. How to generate interest in your development?

- Rules for presenting your project to potential investors/users
- Developing and creating a customer-oriented presentation of your product. • Presentation of your development.

### **4. Teaching materials and resources**

All literature is available on GoogleDrive at: <https://cutt.ly/BjRqr0>. For topics 1 and 2:

1. Donald A. Norman. The Design of Everyday Things / Donald A. Norman. - Book Club "Family Leisure Club," 2019. - 320 p. - 978-617-12-4760-4.
2. Papanek, V. Design for the Real World: Human Ecology and Social Change / Victor Papanek, 2020. - 480 p. - ISBN 978-617-7799-34-3.
3. Siemka, S. Ergonomics and Ergodesign / Serhiy Siemka. - Lira-K, 2019. - 616 p. - 978-617-7799-34-3.

Related to Topic 3:

1. How to Build the Best User Documentation [Electronic resource]. - Access to the resource: <https://www.techsmith.com/blog/user-documentation/>
2. Ultimate Guide to write instruction for User Manual [Electronic resource] - Access mode: <https://document360.com/blog/creating-a-user-manual/>
3. The best user manuals EVER [Electronic resource] – Access mode: [https://headrush.typepad.com/creating\\_passionate\\_users/2007/03/the\\_best\\_user\\_t.html](https://headrush.typepad.com/creating_passionate_users/2007/03/the_best_user_t.html).
4. How to Create a User Manual that Your Users Will Love? [Electronic resource] - Access mode: <https://www.thecloudtutorial.com/how-to-create-a-user-manual/>
5. 40 Free Instruction Manual Templates [Operation / User Manual] [Electronic resource] - Access mode: <https://templatelab.com/instruction-manual-templates/>

Related to Topic 4:

1. How to Make a Presentation Interesting (And NOT Boring!) [Electronic resource] - Access mode: <https://www.techsmith.com/blog/powerpoint-presentation-not-boring/>
2. Krystina Martinez. The best presentation software in 2020 [Electronic resource] / Krystina Martinez. – 2020. – Access to the resource: <https://zapier.com/blog/best-powerpoint-alternatives/>.
3. How to Give a Killer Presentation [Electronic resource] / Chris Anderson. – 2013. – Access to the resource: <https://hbr.org/2013/06/how-to-give-a-killer-presentation>

## Educational content

### 5. Methodology for mastering the academic discipline (educational component)

Lecture material is required to complete each practical assignment. The entire course is divided into four topics, and all lectures and practical assignments are divided as follows and presented in the table below:

| Practical work<br>Lecture | 1       | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9       |
|---------------------------|---------|---|---|---|---|---|---|---|---------|
| 1                         | Topic 1 |   |   |   |   |   |   |   |         |
| 2                         |         |   |   |   |   |   |   |   |         |
| 3                         |         |   |   |   |   |   |   |   |         |
| 4                         |         |   |   |   |   |   |   |   |         |
| 5                         |         |   |   |   |   |   |   |   |         |
| 6                         |         |   |   |   |   |   |   |   |         |
| 7                         |         |   |   |   |   |   |   |   |         |
| 8                         |         |   |   |   |   |   |   |   |         |
| 9                         |         |   |   |   |   |   |   |   | Topic 4 |

Topic 1. Introduction to industrial design.

Aimed at familiarizing students with the concept and basics of industrial design. Why industrial design is inextricably linked to the development of modern devices. Choosing a topic (device) for work during the semester.

Topic 2. Ergonomics in industrial design.

Study of the concept of ergonomics. Basic criteria and laws of ergonomics. Study of the concept of ergonomic systems. Determining the difference between ergonomics and ergonomics.

Based on the laws of ergonomics, simulate a device that will have an intuitive interface. Upon completion of the topic, students must submit a collection of renders in SolidWorks (or other software, as agreed with the instructor) for review.

Topic 3. Instructions (user manual).

Study the features of developing instructions for a device (user manual). Determine the main sections that the instructions should contain. Develop instructions and test *them on* a focus group of classmates. Upon completion of the topic, students must submit instructions for their device (topic) in \*.pdf format.

Topic 4. How to generate interest in your development?

Learning the basic principles of developing a customer-oriented presentation. Reviewing software/services for creating presentations. Upon completion of the topic, students must submit and defend a presentation for their device (topic).

Upon completion of all topics, the course program includes a modular test.

## **6. Independent work by students**

Independent work by students includes submitting the following types of work to the instructor for review (within the deadlines specified by the instructor):

1. A collection of device (topic) renderings in SolidWorks (or other software, as agreed with the instructor).
2. Instructions for your device (topic) in \*.pdf format.
3. Presentation of the device (topic).

The course program includes a calculation and graphic assignment. This includes the completion of all three of the above course assignments and their defense.

## **Policy and control**

### **7. Policy of the academic discipline (educational component)**

- At the beginning of the semester, a Telegram chat for the discipline is created for quick interaction between students and teachers. All students in the group must be present in the chat;
- Attendance at practical classes and lectures is mandatory.
- All assignments must be submitted to the instructor for review by the specified deadlines. Late submissions will result in a deduction of 3 points for each assignment and the loss of the right to redo the work to improve the score.
- If the instructor has questions about the authorship of the work submitted by the student, the instructor has the right to conduct an additional defense of the work.
- Incentive points are awarded for student activity in practical classes.

### **8. Types of control and rating system for assessing learning outcomes (RSO)**

The following maximum points can be obtained for each task (provided that it is completed correctly and submitted for review on time):

1. Analysis of the target audience of the device and its concept - 5 points
2. Assembly with device renders (themes) in SolidWorks (or other software, as agreed with the teacher) - 20 points.
3. Instructions for your device (theme) in \*.pdf format - 15 points.
4. Presentation of the device (theme, provided it is submitted for review on time) - 5 points.

Ongoing assessment: Coursework at the end of the course, maximum score for coursework is 35 points.

Calculation and graphic work – 20 points (the quality of the presentation (10 points) and the report (10 points) are assessed).

Semester assessment: test.

*Table of correspondence between rating points and grades on the university scale*

| <b>Number of points</b>        | <b>Grade</b>   |
|--------------------------------|----------------|
| 10                             | Excellent      |
| 94                             | Very good      |
| 84                             | Good           |
| 74-65                          | Satisfactory   |
| 64-60                          | Sufficient     |
| Less than 60                   | Unsatisfactory |
| Admission requirements not met | Not admitted   |

## **9. Additional information on the discipline (educational component)**

*Description of material, technical, and informational support for the discipline*

Computer, *SolidWorks* software (student license), *Microsoft Office* (or any other text editors and presentation software)

---

Work program for the academic discipline (syllabus):

**Compiled by** [Y. L. Zinger](#);

**Approved by** the PRE Department (Minutes No. 06/2024 dated 06/27/2024)

**Approved by** the methodological commission of the faculty/research institute (protocol No. 06/2024 dated 28.06.2024)