gu HauioHanbHUM TeXHIYHUI YHiBEpcUTET YKpaiHU
ag «KUTBCbKUMA NONITEXHIYHUNA IHCTUTYT

Department of Radio
Engineering Systems

%)

imeHi ITOPA CIKOPCbKOTO»

OBJECT-ORIENTED PROGRAMMING
BASED ON QT TECHNOLOGY

Work program of the academic discipline (Syllabus)

Level of higher education
Field of knowledge
Special

Educational program

Discipline status

Form of study

Year of study, semester
Scope of the discipline

Semester control/control
measures

Class schedule
Language of instruction

Information about the
course supervisor/teachers

Course location

Details of the academic discipline

First (bachelor's)
17 — Electronics, Automation, and Electronic Communications
172 — Electronic communications and radio engineering

Intelligent technologies of radio-electronic engineering Information and
communication radio engineering Radio engineering computerized systems

Elective

Full-time (day)

2nd year, 3rd semester

120 hours (16 hours — lectures, 30 hours — laboratory work, 74 hours —
independent study)

Test/test work, MCR

Ukrainian

Lecturer: Ph.D., Associate Professor Pavlo Yuriyovych Katin, _
katin.dino@gmail.com,

mobile +38(098)202-08-11

Laboratory: Ph.D., Associate Professor Pavlo Yuriyovych Katin,

Curriculum

1. Description of the academic discipline, its purpose, subject matter, and outcomes. The purpose of
studying the discipline (credit module) "Object-Oriented Programming Based on Qt Technology" is to
provide students with the knowledge and skills to independently develop the architecture and software
implementation of prototypes that can form the basis of radio engineering systems and other software

solutions.

C++ syntax in the context of using the language in the Qt library system, software development, debugging,
and support technology. Fundamentals of object-oriented programming (OOP) and features of the OOP
paradigm in Qt-based programs. Various options for C++-based software solution architectures in the context
of using the language in the Qt library system.

Studying this discipline (credit module) allows you to:

create graphical user interfaces using Qt libraries and the C++ programming language;


mailto:katin.dino@gmail.com

create programs for working with relational databases using Qt libraries and the C++ programming language;
create programs for working with peripheral device drivers, files, and network technologies; ensure the

platform independence of the resulting software solutions.

2. Prerequisites and post-requisites of the discipline (place in the structural-logical scheme of training under
the relevant educational program)

Successful completion of the discipline (credit module) is based on the discipline "Programming" in the
curriculum for bachelor's degree programs in specialty 172.

The theoretical knowledge and practical skills acquired during the study of the discipline (credit module) are
necessary for the development of a bachelor's project.

3. Contents of the discipline
Topic 1. C++ syntax in Qt — basic language constructs, signals and slots, meta-objects.
Topic 2. Development and debugging — Qt Creator, CMake/qmake, profiling, testing. Topic 3. OOP in Qt —
encapsulation, inheritance, polymorphism, QObject, and QWidgets.
Topic 4. Architectures — MVC, MVVVM, design patterns, signal-slot model. Topic 5. GUI — Qt Widgets, Qt
Quick, QML, interface creation.
Topic 6. Databases — Qt SQL, SQLite/MySQL/PostgreSQL, CRUD operations. Topic
7. Drivers, files, networks — QFile, QlODevice, TCP/UDP client-server.

Topic 8. Platform dependency — Qt cross-platform compatibility, conditional compilation, testing on different
operating systems.

Topic 9. Final review — knowledge integration, development of a comprehensive application. Modular test

4. Teaching materials and resources
Main literature:

1. Stroustrup, B. The C++ Programming Language. 4th ed. — Boston: Addison-Wesley, 2013. —
1376 p.
2. Blanchette, J., Summerfield, M. C++ GUI Programming with Qt 4. — Upper Saddle River: Prentice
Hall, 2006. - 512 p.
3. Summerfield, M. Advanced Qt Programming: Creating Great Software with C++ and Qt 4. —
Upper Saddle River: Addison-Wesley, 2010. — 528 p.

Additional reading:
4. Blanchette, J., Summerfield, M. C++ GUI Programming with Qt 5. — Upper Saddle River :
Prentice Hall, 2016. — 624 p.
5. Meyers, S. Effective C++: 55 Specific Ways to Improve Your Programs and Designs. 3rd ed. —
Boston : Addison-Wesley, 2005. — 320 p.
6. Documentation [Electronic resource]. — Access mode: <https://doc.qt.io>.


https://doc.qt.io/

Educational content

1. Methodology for mastering the academic discipline (educational component).

No

Type of classes

Description of class content

Topic 1. C++ syntax

in Qt — basic language constructs, signals and slots, meta-objects.

1

Lecture 1. Fundamentals of
C++ syntax and
integration with Qt

Key C++ constructs (classes, templates, exceptions) are
discussed. The role of the preprocessor, namespaces, and
the standard library are explained. The mechanism of

2 signals and slots in Qt as an extension of C++ is
demonstrated. An example of a simple Qt program using
basic elements is shown.

3 Laboratory work 1. Introduction to C++ syntax and creation of your

first Qt program

Topic 2. Development and debugging — Qt Creator, CMake/qmake, profiling, testing.

4 Lecture 2. Development and  |Overview of the Qt Creator environment, gmake and
debugging tools in Qt CMake build systems. Methods of debugging programs:
Creator breakpoints, viewing variables, profiling. Using unit tests to
verify functionality. Practical aspects of code maintenance
5 and documentation.
6 Lab work 2. Using signals and slots in Qt

Topic 3. OOP in Qt — encapsulation, inheritance, polymorphism, QObject, and QWidgets.

7 Lecture 3. Object-oriented  |Encapsulation, inheritance, and polymorphism in C++.
programming and the Qt  |Fegtures of the QObject class and its role in Qt. Using
par ad{gm virtual methods and function overriding. Examples of
paradigm creating custom widgets based on Qt base classes.

8

9 Laboratory work 3. Implementation of classes and inheritance in Qt programs

Topic 4. Architectures — MIVC, MVVM, design patterns, signal-slot model.

10

Lecture 4. Architectural
approaches in C++/Qt

Overview of MVC and MVVM models in the context of Qt.
ISignal-slot architecture as the basis for component

interaction. Use of design patterns , Observer,

11

Singleton,  Factory).




Examples of building ~ small

using architectural solutions.

systems

12

Laboratory work 4.

Building application architecture (MVC/MVVM)

Midterm Test

Topic 5. GUI — Qt Widgets, Qt Quick, QML, interface creation.

13 Lecture 5. Creation Graphical |Basics of working with Qt Widgets: buttons, menus,
interfaces dialogs. Using Qt Designer to quickly create interfaces.
14 Introduction to QML and its role in modern Uls. Examples
of combining QML and C++ in a single application.
15 Lab work 5. Creating a graphical user interface with Qt

Widgets

Topic 6. Databases

—Qt SQL, sQlite/MySQL/PostgreSQL, CRUD operations.

16 Lecture 6. Qt SQL and Overview of the Qt SQL Module and its capabilities.
database integration Connecting to SQLite, MySQL, and PostgreSQL. Performing
CRUD operations via Qt. Examples of creating an
17 application with a database.
18 Lab 6. Working with databases in Qt SQL (CRUD operations)

Topic 7. Drivers, files, networks — QFile, QlODevice,

TCP/UDP client-server.

19 Lecture 7. Qt Network and Using QFile and QlODevice classes to work with files. Basics
file operations of working with TCP and UDP network protocols. Creating
o0 client-server applications in Qt. Examples of interaction
with peripheral devices.
21 Laboratory work 7. Working with files and network technologies in Qt

Topic 8. Platform dependency — Qt cross-platform compatibility, conditional compilation, testing on different

operating systems.

22 Lecture 8. Cross-platform Features of Qt on Windows, Linux, and macOS. Using
compatibility and conditional |conditional compilation (#ifdef, #endif). Testing programs
compilation. on different operating systems. Practical examples of

23 adapting code for different platforms.

24 Lab work 8. Cross-platform testing and adaptation

of software

Topic 9. Final review — integration of knowledge, development of a comprehensive application.




25 Lecture 9. Comprehensive Generalization of knowledge of previous
application developmentin  |\modules. Designing a comprehensive application with a
C++/Qt GUI,
database and network capabilities.

26 Discussion of  typical problems and ways to
solutions. Preparation  for defending course
project.

Credit

6. Independent work of a student/graduate student

The discipline is based on independent preparation for classroom sessions on theoretical and practical

topics.

No |Area of independent preparation Number of |Literature
hours

1 Preparation for Lecture 1 1 1-5
2 Preparation for laboratory work 1 1.5 1
3 Preparation for lecture 1 1 1
4 Preparation for lecture 2 1 1
5 Preparation for laboratory work 2 1.5 1
6 Preparation for lecture 2 1 1
7 Preparation for lecture 3 1 1
8 Preparation for laboratory work 3 (part 1) 1.5 1
9 Preparation for lecture 3 1 1
10 |Preparation for lecture 4 1 1
11  |Preparation for laboratory work 3 (part 2) 1.5 1-5
12  |Preparation for lecture 4 1 1
13 |Preparation for lecture 5 1 1
14  |Preparation for laboratory work 4 (part 1) 1.5 1
1 Preparation for lecture 5 1 1
16  |Preparation for lecture 6 1 1
17  |Preparation for laboratory work 4 (part 2) 1.5
1 Preparation for lecture 7 1
19  |Preparation for lecture 7 1
20 |Preparation for laboratory work 5 1.5
21  |Preparation for lecture 8 1 1
2 Preparation for Lecture 8 1 1




23 |Preparation for Laboratory Work 6 (part 1) 1.5 1
2 Preparation for lecture 16 1 1
25  |Preparation for lecture 9 1 1
26  |Preparation for laboratory work 6 (part 2) 1.5 1
27  |Preparation for the midterm test 4 1
28 |Qt SQL Module 30 1-5
29  |IMVC and MVVM in the context of Qt. 2 1
30 |SQLite, MySQL, and PostgreSQL 1 1
31  |Essential C++ Features for web developing. Stage 1. 1 1
32  |Essential C++ Features for web developing. Stage 1. 1 1
33  |Essential C++ Features for web developing. Stage 2. 1.5 1
34  |Essential C++ Features for web developing. Stage 2. 1

35  |Essential C++ Features for web developing. Stage 3. 1 1
36 |Essential C++ Features for web developing. Stage 3. 2 1
37  |Essential C++ Features for web developing. Stage 4. 2 1
38  |Essential C++ Features for web developing. Stage 4. 1 1
39 |QFile and QlODevice 1 1
40 |TCP and UDP. 2 1

Policy and control

7. Academic discipline policy (educational component)

Attendance at lectures is mandatory. In exceptional circumstances, attendance requirements and other
aspects of the policy may be subject to change.

Attendance at computer lab classes may be sporadic and, if necessary, for consultation/defense of
laboratory work.

Rules of conduct in class: be active, respect others, turn off phones. Follow the academic integrity policy.

Rules for defending laboratory work: work must be done in accordance with the tasks set and according
to the option.

8. Types of control and rating system for assessing learning outcomes (RSO)

During the semester, students complete 8 laboratory works. The maximum number of points for each:
10 points.

Points are awarded for:
- quality of laboratory work: 0-5 points;
- answers during the defense of laboratory work: 0-3 points;
- timely submission of work for defense: 0-2 points.

Criteria for assessing the quality of performance:
5 points — work performed well, in full;



4 points — the work is done well, in full, but has some flaws;

3 points — the work is completed in full, but contains minor errors; 2 points —
the work is completed in full, but contains significant errors; O points — the
work is not completed in full.

Criteria for evaluating answers:

3 points — the answer is complete and well-reasoned;

2 points — the answer is correct, but has shortcomings or minor
errors; 1 point — the answer contains significant errors;

0 points — no answer or incorrect answer.

Criteria for assessing the timeliness of submitting work for defense: 2 points — work submitted for
defense no later than the specified deadline;
0 points — the work was submitted for defense after the specified deadline.

Maximum number of points for completing and defending laboratory work: 10 points x 8 lab sessions =
80 points.

During the semester, quizzes on the topic of the current lesson are held during lectures. Maximum
number of points for all quizzes: 3 points. The number of quizzes on the topic of the current lesson for
one student is unlimited.

The module test consists of 1 theoretical and 1 practical question. The answer is graded on a scale of
up to 20 points.

The criteria for evaluating each question of the test are as follows: 9-10 points — the answer is correct,
complete, and well-reasoned;

7-8 points — the answer is correct, detailed, but not very well

argued; 5-6 points — the answer is generally correct, but has

some flaws;

3-4 points — the answer has minor errors;

1-2 points — the answer contains significant

errors; 0 points — no answer or incorrect

answer.

Maximum number of points for the module test: 10 points x 2 questions
= 20 points.

The rating scale for the discipline is:

R = 80 points + 20 points = 100
points.

Calendar control: conducted twice per semester as monitoring of the current status of syllabus
requirements fulfillment.

At the first assessment (week 8), the student receives a "pass" if their current rating is at least 15
points (50% of the maximum number of points a student can receive before the first assessment).

At the second assessment (week 14), students receive a "pass" if their current rating is at least 20
points (50% of the maximum number of points a student can receive before the second assessment).

Semester control: credit

Condlitions for admission to semester control:

With a semester rating (rc) of at least 60 points and all computer workshop assignments completed,
the student automatically receives a credit according to the table (Table of correspondence of rating
points to grades on the university scale). Otherwise, they must complete a credit test.

A prerequisite for admission to the credit test is the completion and defense of laboratory work.

If a student does not agree with the automatic grade, they can try to improve their grade by writing a
credit test, in which case their points earned during the semester are retained, and the better of the
two grades received by the student is awarded (a "soft" grading system).



Table of correspondence between rating points and grades on the university scale:

Number of points Rating
100-95 Excellent
94 Very good
84 Good
74-65 Satisfactory
64-60 Sufficient

Less than 60

Unsatisfactory

Admission requirements not met

Not admitted

9. Additional information on the discipline (educational component)

Various operating systems may be used for work at the student's discretion and in agreement with the

instructor.
If students wish to use other programming languages or technologies in the computer lab, they can be
included as an additional element in the basic architecture of the distributed web application.

Work program of the academic discipline (syllabus):

Compiled by Associate Professor of the Department, Ph.D., Associate Professor, Katin P.Yu.

Approved by the RTS Department (Minutes No. 06/2025_ dated June 24, 2025)

Approved by the Methodological Commission of the Radio Engineering Faculty (Minutes No. 06/2025
dated 25.06.2025)



