

[RE-88] .NET TECHNOLOGIES FOR SOFTWARE DEVELOPMENT

Curriculum of the academic discipline (Syllabus)

Course details

Level of higher education	First (bachelor's)
Field of knowledge	17 - Electronics and Telecommunications Specialization 172 – Electronic Communications and Radio Engineering
Educational program	All educational programs
Status of discipline	Elective (F-catalog)
Form of higher education	Full-time
Year of preparation, semester	Available for selection starting from the 2nd year, fall semester
Scope of the discipline	4 credits (Lectures 18 hours, Practical 36 hours, Lab 0 hours,
Independent work 66 hours)	
Semester	
Control/control measures	Credit
Class schedule	https://rozklad.kpi.ua
Language of instruction	Ukrainian
Information about the course coordinator/teachers	Lecturer: Nikitchuk A. V. , Practical: Nikitchuk A. V. ,
Course location	https://do.ipo.kpi.ua/course/view.php?id=5927

Curriculum

1. Description of the course, its purpose, subject matter, and learning outcomes

Objective: to familiarize students with the basic concepts and features of the *Microsoft .NET (.NET)* platform, to acquire the knowledge and skills necessary for the industrial development of software products with the appropriate functionality for radio engineering information systems.

.NET is a platform that reflects the latest trends in development and offers many opportunities for novice specialists. Knowledge of the basics of .NET will allow you to be flexible in choosing a specialization and programming field.

The main objectives of the discipline are:

1. Learning the basic concepts and components of the .NET platform.
2. Introduction to *Visual Studio* tools and development environment to increase productivity in application development.
3. Mastering the C# programming language for creating desktop, web, and mobile applications on the .NET platform.
4. Using various libraries and frameworks that are part of the .NET ecosystem to implement different functionalities.
5. Introduction to web application development using *ASP.NET Core* technology, including working with *MVC (Model-View-Controller)*.
6. Creating databases on the *MSSQL* server, connecting to the project, and using them.
7. Familiarization with the development of mobile and cross-platform applications on the .NET platform using *MAUI* (formerly *Xamarin*).
8. Studying programming principles and patterns, refactoring basics, for continuous improvement of software product quality.

As a result of studying the discipline, the following competencies are formed:

PC 19	Ability to apply object-oriented programming technology and basic design patterns when creating software with appropriate functionality for radio-technical information systems and implement programs in various programming environments.
PC 20	Ability to select methods and means of information processing using intelligent technologies.
PLO 4	Apply databases, mathematical and software for data processing and computer modeling of telecommunications and radio engineering systems, and intelligent radio electronics technologies.

Students will learn:

- the C# programming language;
- the basic concepts of .NET technology and the basic principles of creating software using it;
- the main libraries that make up .NET.

Students will be able to:

- work in the *Microsoft Visual Studio* programming environment;
- create programs in C# using object-oriented technology;
- create software with a graphical user interface (for desktop, web, and mobile use);
- develop software for interacting with databases;
- develop software for working in the Internet telecommunications network using *ASP.NET Core* technology.

In addition, using .NET on C#, it is possible to create IoT (Internet of Things) programs for Raspberry Pi, HummingBoard, BeagleBoard, Pine A64, etc. Using existing open source libraries and frameworks to interact with specialized equipment such as sensors, analog-to-digital converters, and LCD devices. Also, with .NET, you can create computer games for the Unity platform (this is how such well-known games as *Hearthstone: Heroes of Warcraft*, *Cities Skylines*, *Cuphead*, *Pillars of Eternity*, *Pokemon Go*, *Subnautica*, and others were created).

2. Prerequisites and post-requisites of the discipline (place in the structural-logical scheme of training under the relevant educational program)

Before starting to study the discipline, students must have:

- knowledge of computer science and basic programming skills (courses: Computer Science, Introduction to the Specialty);
- English language (or skills in using online translators).

Related disciplines:

- [Software quality control](#).
- [Programming of embedded Internet of Things systems](#).
- [Computer networks and security using CISCO technologies](#).

3. Course content

- Topic 1. Computers, programming, and Microsoft.NET
- Topic 2. Basics of program execution and the C# programming language
- Topic 3. Basic C# operators
- Topic 4. Features of OOP implementation and interaction between classes
- Topic 5. Exception handling. Basics of LINQ
- Topic 6. Application programming interface
- Topic 7. Creating web applications using the MVC architectural pattern
- Topic 8. Principles and patterns of software design

4. Training materials and resources

Electronic resources

1. Microsoft's library of documentation and learning resources for developers and other professionals working with technology — <https://docs.microsoft.com/uk-ua/>
2. W3Schools — The largest free educational website for developers and online programming education. 3 billion pages are viewed annually. 60 million visitors per month — <https://www.w3schools.com/>
3. C# Corner — A global online community of software developers. In 2021, C# Corner served 29.4 million visitors — <https://www.c-sharpcorner.com/>
4. Programiz — An educational website for learning programming. Millions of users view tutorials and examples from around the world — <https://www.programiz.com/>
5. Stackify — helps developers write better code. Their products allow you to test your code as you write it. This helps developers fix performance issues early and better verify their code — <https://stackify.com/>

Books

1. Head First Design Patterns, Eric Freeman, Elizabeth Robson, Katie Sierra, Bert Bates (Ukrainian)
2. Clean Code, Robert Martin (Ukrainian)
3. C#: Learn C# in One Day and Learn It Well. C# for Beginners with Hands-on Project, LCF Publishing, 161 pages (English)
4. C# 8.0 and .NET Core 3.0, Mark J. Price (English)
5. C# in Depth: Programming Details, John Skeet (English)

Educational content

5. Methodology for mastering the academic discipline (educational component)

Class	Description
-------	-------------

Topic 1. Computers, programming, and Microsoft.NET

Lecture 1 Organizational issues. Computer system. Software, computer programs. Operating system. Programming languages. How a computer processes programs. Microsoft.NET (.NET) ecosystem.

PR 1 Introduction to the Visual Studio environment and the C# code editor
PR 2 Introduction to projects, solutions, and their testing

Topic 2. Fundamentals of program execution and the C# programming language

Common Type System (CTS). Common Language Specification (CLS).
Lecture 2 Common Language Runtime (CLR). Variables and constants. Data types in .NET. Data categories: value types and reference types.

Topic 3. Basic C# operators

Operators: arithmetic, assignment, logical, comparison,
Lecture 3 equality, Boolean. Program structure. Namespaces. Selection operators. Iteration operators. Arrays. OOP paradigm.

PR 3	Mathematical operations. Conditional and loop operators.
PR 4	One-dimensional arrays. Multidimensional arrays.
PR 5	Methods
PR 6	Classes

Topic 4. Features of OOP implementation and interaction between classes

Features of OOP implementation (constructor; *this*; object creation; static class; destructor). Interaction between classes (association; composition; aggregation; inheritance). Polymorphism (during compilation; during execution; method hiding).

PR 7 Inheritance (creation of a base class and a descendant class, declaration of their contents, working with methods of such classes)

PR 8 Association, composition, and aggregation (abstract class, descendant classes, abstract methods, method overriding)

Topic 5. Exception handling. LINQ basics

Exceptions and exception handling. *LINQ (Language*

Lecture 5 *Integrated Query* - queries integrated into the language). Queries to different data sources or data formats.

PR 9 Exceptions and handling of exceptional situations (argument checking, use of *try...catch* constructs, *throw* operator).

PR 10 Executing data queries using LINQ.

Topic 6. Application programming interface

Creating your first program with a graphical interface (form).

Lecture 6 Adding a control to a form. Creating event handlers. Setting size and scale. Examples of creating programs.

PR11 Creating a program with a graphical interface based on the *Windows Forms (.NET) project*.

Creating a database and connecting it to the project. Debugging

PR 12 the program for working with the database. Publishing and testing the application.

Topic 7. Creating web applications using the MVC architectural pattern

ASP.NET — a technology for creating web applications and web services from Microsoft. *Model-View-Controller* architectural pattern

Lecture 7 (*MVC*), which divides the program into three main groups of components. Creating an *ASP.NET MVC* application, folder structure, adding components. Transferring data between the controller and the view.

PR 13 Creating a web application using *ASP.NET Core* technology and the *MVC* architectural pattern, part 1: user interface (*front-end*) and its connection to the controller (*back-end*).

PR 14 Connecting *Entity Framework Core*. Working with a database in an *ASP.NET Core MVC* application.

Topic 8. Software design principles and patterns

Lecture 8 Principles of OOP programming and *SOLID* design. Programming patterns. Refactoring.

Creating a cross-platform *MAUI (Multi-platform App)* application

PR 15 *UI*) for mobile and desktop devices. Setting up an emulator and *Android* device.

PR 16 Cross-platform development. Migrating a project from *Windows Forms* to *MAUI*. Testing the application on an *Android/iOS* mobile device.

Defense of works and semester control

PR Classes are devoted to defending previous work, summarizing results, and announcing scores based on the results of current assessments.

The test is conducted during the last two weeks of theoretical training in

Lecture 9 semester, usually during the last scheduled class in the relevant academic discipline (educational component).

6. Independent work of the student

1. Throughout the semester:

- *Study of lecture material.*
- *Working through literary sources.*
- *Answering questions for self-assessment.*

2. During the week before the scheduled date:

- *Preparation for practical work.*
- *Preparation for writing a test.*
- *Preparation for completing the take-home test.* •

Prepare for the exam.

Policy and control

7. Academic discipline policy (educational component)

Rules for attending classes:

- *for lectures and practical classes - attendance at classes (Zoom video conferences) according to the schedule;*
- *independent study of the material using lecture recordings and other materials posted in the relevant distance learning course is permitted;*
- *Practical tasks may be completed asynchronously.*

Rules of conduct during classes:

- *During classes, the Internet must be used for: completing assignments in the distance learning course; familiarizing yourself with the links provided; accessing modern, organized sources of information.*
- *The use of mobile phones, laptops, and other devices is permitted.*

Rules for performing practical work:

- *if the teacher has questions about the results obtained, it is necessary to verbally*

go through the defense procedure (answer questions);

- The defense procedure is considered timely if it is completed during the class dedicated to the work or the next class according to the schedule.

Rules for awarding bonus points:

- bonus points are awarded for completing additional tasks specified in the assignments.

Rules for assigning penalty points:

- penalty points may be awarded for late submission/defense of practical work.

Deadline and resit policy:

- tests, exams, and practical assignments must be completed by the last class of the semester.

8. Types of assessment and the learning outcomes assessment rating system (LOAS)

- *Ongoing assessment: quizzes (tests) on lecture topics (16 points), practical work (64 points), Module Control Work (10 points), Home Control Work (10 points).*
- *Calendar assessment: conducted twice per semester as monitoring of the current status of syllabus requirements.*
- *Semester assessment: credit.*
- *Conditions for admission to semester assessment: semester rating of more than 60 points.*

Table of correspondence between rating points and grades on the university scale

Number of points	Grade
100-95	Excellent
94	Very good
84	Good
74-65	Satisfactory
64-60	Sufficient
Less than 60	Unsatisfactory
Admission requirements not met	Not admitted

9. Additional information on the discipline (educational component)

...

Description of material, technical, and informational support for the discipline

Classes are held on computers located in the PRE department's classroom. Students may also use their own computers. The main software is *Microsoft Visual Studio Community*, a free, full-featured, extensible integrated development environment (*IDE*) for creating modern *Android*, *iOS*, and *Windows* applications, as well as web applications and cloud services.

The course syllabus (syllabus):

Compiled by [Nikitchuk A. V.](#);

Approved by the PRE Department (Minutes No. 06/2024 dated 06/27/2024)

Approved by the methodological commission of the faculty/research institute (protocol No. 06/2024 dated 28.06.2024)